论文标题

OPTCOMNET:低复杂通道估计的优化神经网络

OptComNet: Optimized Neural Networks for Low-Complexity Channel Estimation

论文作者

van Lier, Michel, Balatsoukas-Stimming, Alexios, Corporaaal, Henk, Zivkovic, Zoran

论文摘要

使用机器学习方法来解决挑战性的物理层信号处理任务,引起了极大的关注。在这项工作中,我们专注于使用神经网络(NNS)在OFDM系统中执行试验辅助通道估计,以避免估算频道协方差矩阵的具有挑战性的任务。特别是,我们对NN配置,量化和修剪进行系统的设计空间探索,以改善文献中通常用于通道估计任务的FeedForward NN体系结构。我们表明,选择合适的NN体系结构对于降低NN辅助通道估计方法的复杂性至关重要。此外,我们证明,与其他应用程序和域类似,仔细的量化和修剪可以导致降低可忽略的降级。最后,我们表明,使用具有多个针对不同信噪比的多个不同NNS的解决方案,有趣的是,有趣的是,使用对整个SNR范围的单个NN进行了培训,可以提高整体计算复杂性和存储要求。

The use of machine learning methods to tackle challenging physical layer signal processing tasks has attracted significant attention. In this work, we focus on the use of neural networks (NNs) to perform pilot-assisted channel estimation in an OFDM system in order to avoid the challenging task of estimating the channel covariance matrix. In particular, we perform a systematic design-space exploration of NN configurations, quantization, and pruning in order to improve feedforward NN architectures that are typically used in the literature for the channel estimation task. We show that choosing an appropriate NN architecture is crucial to reduce the complexity of NN-assisted channel estimation methods. Moreover, we demonstrate that, similarly to other applications and domains, careful quantization and pruning can lead to significant complexity reduction with a negligible performance degradation. Finally, we show that using a solution with multiple distinct NNs trained for different signal-to-noise ratios interestingly leads to lower overall computational complexity and storage requirements, while achieving a better performance with respect to using a single NN trained for the entire SNR range.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源