论文标题
丰富的前lie Operad和Freeness定理
Enriched pre-Lie operads and freeness theorems
论文作者
论文摘要
在本文中,我们研究了由Calaque和Willwacher定义的任何Hopf Cooperad C定义的C富集的前lie Operad,以生成作用于各种变形复合物的作战的概念结构。 Hopf Cooperads之间的地图导致相应丰富的前lie Operads之间的地图;我们证明了该域在代码域上的模块动作的标准,在左侧和右侧是免费的。特别是,这意味着一个新的函数庞加尔 - 比尔克霍夫 - 韦特型定理,用于普遍的代数代数。
In this paper, we study the C-enriched pre-Lie operad defined by Calaque and Willwacher for any Hopf cooperad C to produce conceptual constructions of the operads acting on various deformation complexes. Maps between Hopf cooperads lead to maps between the corresponding enriched pre-Lie operads; we prove criteria for the module action of the domain on the codomain to be free, on the left and on the right. In particular, this implies a new functorial Poincaré--Birkhoff--Witt type theorem for universal enveloping brace algebras of pre-Lie algebras.