论文标题

无线指纹通过深度学习:混杂因素的影响

Wireless Fingerprinting via Deep Learning: The Impact of Confounding Factors

论文作者

Cekic, Metehan, Gopalakrishnan, Soorya, Madhow, Upamanyu

论文摘要

我们可以使用相同的协议区分两个无线发射器,这些无线发射器发送完全相同的消息?这样做的机会是由于发射机之间的微妙非线性变化,甚至是由同一制造商制造的。由于这些效果很难明确建模,因此我们使用复杂值的深神经网络(DNN)研究了学习装置的指纹,这些神经网络(DNN)将其作为接收器中复杂的基带信号的输入。我们询问是否可以使由于时钟漂移和无线通道中的时钟漂移和变化导致的时间和位置的分配变化是否可以使这种指纹变为强大。在本文中,我们指出,除非主动劝阻这样做,否则DNNS学习了这些强大的混杂功能,而不是我们寻求学习的非线性设备特定特征。我们根据WiFi和ADS-B协议的数据提出和评估基于增强和估计的策略,以促进这些混杂因素的实现的概括。我们得出的结论是,尽管DNN培训具有不需要明确的信号模型的优势,但需要大量的建模见解才能将学习集中在我们希望捕获的效果上。

Can we distinguish between two wireless transmitters sending exactly the same message, using the same protocol? The opportunity for doing so arises due to subtle nonlinear variations across transmitters, even those made by the same manufacturer. Since these effects are difficult to model explicitly, we investigate learning device fingerprints using complex-valued deep neural networks (DNNs) that take as input the complex baseband signal at the receiver. We ask whether such fingerprints can be made robust to distribution shifts across time and locations due to clock drift and variations in the wireless channel. In this paper, we point out that, unless proactively discouraged from doing so, DNNs learn these strong confounding features rather than the nonlinear device-specific characteristics that we seek to learn. We propose and evaluate strategies, based on augmentation and estimation, to promote generalization across realizations of these confounding factors, using data from WiFi and ADS-B protocols. We conclude that, while DNN training has the advantage of not requiring explicit signal models, significant modeling insights are required to focus the learning on the effects we wish to capture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源