论文标题
超出脉冲激光器驱动的薄型靶标的静电冲击动力学的碰撞影响
Collisional effects on the electrostatic shock dynamics in thin-foil targets driven by an ultraintense short pulse laser
论文作者
论文摘要
我们从数值上研究了库仑碰撞对高$ z $,固体密度的氢化物和铜靶的离子动力学的影响,并受到高强度($ i \ of2 { - } 5 \ times10^{20} {20} {20} {\ rm \ rm \,Wcm^{ - 2} $) ($ {\ sim} 10 {\ rm \,fs} $),使用粒子中的粒子模拟,圆两极化的激光脉冲。碰撞显着增强了电子加热,从而大大提高了激光 - 血压相互作用中引起的冲击波的速度。在Hydride靶标中,两个离子物种之间的碰撞将质子加热到$ {\ sim} 100 { - } 1000 {\ rm \,ev} $温度。但是,与以前的工作相比(A.E. Turrell等,2015 Nat。Commun。6,8905),由于几乎总质子反射,此过程仅在上游发生。这种差异归因于用于处理密集/冷等离子体碰撞的不同模型。在铜靶的情况下,离子反射可以从自我扩增的过程开始,并自行引导。之后,反射和上游离子之间的碰撞显着加热这两个种群。当将脉冲持续时间增加到$ 60 {\ rm \,fs} $时,震动前部更清楚地将激光活塞分离出来,因此可以研究而无需直接干扰激光器。在早期形成的冲击波表现出流体动力和静电冲击的典型特性,包括离子反射。在后期,冲击被认为演变成流体动力的爆炸波。
We numerically investigate the impact of Coulomb collisions on the ion dynamics in high-$Z$, solid density caesium hydride and copper targets, irradiated by high-intensity ($I\approx2{-}5\times10^{20}{\rm\,Wcm^{-2}}$), ultrashort (${\sim}10{\rm\,fs}$), circularly polarized laser pulses, using particle-in-cell simulations. Collisions significantly enhance electron heating, thereby strongly increasing the speed of a shock wave launched in the laser-plasma interaction. In the caesium hydride target, collisions between the two ion species heat the protons to ${\sim}100{-}1000{\rm\,eV}$ temperatures. However, in contrast to previous work (A.E. Turrell etal., 2015 Nat. Commun. 6, 8905), this process happens in the upstream only, due to nearly total proton reflection. This difference is ascribed to distinct models used to treat collisions in dense/cold plasmas. In the case of a copper target, ion reflection can start as a self-amplifying process, bootstrapping itself. Afterwards, collisions between the reflected and upstream ions heat these two populations significantly. When increasing the pulse duration to $60{\rm\,fs}$, the shock front more clearly decouples from the laser piston, and so can be studied without direct interference from the laser. The shock wave formed at early times exhibits properties typical of both hydrodynamic and electrostatic shocks, including ion reflection. At late times, the shock is seen to evolve into a hydrodynamic blast wave.