论文标题

使用SDO/HMI矢量磁数据产品和复发性神经网络预测冠状质量弹出

Predicting Coronal Mass Ejections Using SDO/HMI Vector Magnetic Data Products and Recurrent Neural Networks

论文作者

Liu, Hao, Liu, Chang, Wang, Jason T. L., Wang, Haimin

论文摘要

我们提出了两个基于门控复发单元的复发性神经网络(RNN),另一个基于长期记忆,用于预测产生M-或X级耀斑的活性区域(AR)是否也会产生冠状质量弹出(CME)。我们在AR中对数据样本进行建模为时间序列,并使用RNN捕获数据样本的时间信息。每个数据样本都有18个物理参数或特征,这些参数源自载机震动和磁成像仪(HMI)在太阳能动力学天文台(SDO)上获取的光电矢量磁场数据。我们调查了2010年5月至2019年5月发生的M-和X级耀斑,使用国家环境信息中心(NCEI)提供的地理操作环境卫星的X射线耀斑目录,并选择那些在NCEI目录中识别出ARS的耀斑。此外,我们从通知,知识,信息(Donki)的太空天气数据库中提取了耀斑和CME的关联。我们使用上面收集的信息来构建手头数据样本的标签(正与负)。实验结果表明,在预测数据样本标签时,我们的RNN优于密切相关的机器学习方法。我们还讨论了我们的方法的扩展,以预测M-或X级耀斑启动CME的可能性的概率估计,并具有良好的性能结果。据我们所知,这是RNN首次用于CME预测。

We present two recurrent neural networks (RNNs), one based on gated recurrent units and the other based on long short-term memory, for predicting whether an active region (AR) that produces an M- or X-class flare will also produce a coronal mass ejection (CME). We model data samples in an AR as time series and use the RNNs to capture temporal information of the data samples. Each data sample has 18 physical parameters, or features, derived from photospheric vector magnetic field data taken by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). We survey M- and X-class flares that occurred from 2010 May to 2019 May using the Geostationary Operational Environmental Satellite's X-ray flare catalogs provided by the National Centers for Environmental Information (NCEI), and select those flares with identified ARs in the NCEI catalogs. In addition, we extract the associations of flares and CMEs from the Space Weather Database Of Notifications, Knowledge, Information (DONKI). We use the information gathered above to build the labels (positive versus negative) of the data samples at hand. Experimental results demonstrate the superiority of our RNNs over closely related machine learning methods in predicting the labels of the data samples. We also discuss an extension of our approach to predict a probabilistic estimate of how likely an M- or X-class flare will initiate a CME, with good performance results. To our knowledge this is the first time that RNNs have been used for CME prediction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源