论文标题
$ \ Mathcal {pt} $中的量子相关性 - 对称系统
Quantum correlations in $\mathcal{PT}$-symmetric systems
论文作者
论文摘要
我们研究范式设置中相关性的动力学,以观察$ \ Mathcal {pt} $ - 对称物理学:一对耦合振荡器,其中一个受到损失的影响。从连贯的状态开始,尽管系统仅驱动不连贯,并且可以无限期地生存,但仍会创建量子相关性(QC)。 $ \ MATHCAL {PT} $对称破坏伴随于非零固定QC。我们将$ \ MATHCAL {PT} $对称性链接到总计和QC的长期行为,它们在$ \ Mathcal {pt} $中显示不同的量表 - 损坏/不间断的阶段以及在特殊点(EP)。这是通过熵平衡来分析显示的,并定量解释。 EP特别是最古典的配置。
We study the dynamics of correlations in a paradigmatic setup to observe $\mathcal{PT}$-symmetric physics: a pair of coupled oscillators, one subject to a gain one to a loss. Starting from a coherent state, quantum correlations (QCs) are created, despite the system being driven only incoherently, and can survive indefinitely. $\mathcal{PT}$ symmetry breaking is accompanied by non-zero stationary QCs. We link $\mathcal{PT}$ symmetry breaking to the long-time behavior of both total and QCs, which display different scalings in the $\mathcal{PT}$-broken/unbroken phase and at the exceptional point (EP). This is analytically shown and quantitatively explained in terms of entropy balance. The EP in particular stands out as the most classical configuration.