论文标题
平滑图形用于建模可交换的关系数据
Smoothing Graphons for Modelling Exchangeable Relational Data
论文作者
论文摘要
可以通过\ textit {graphon理论}来描述建模可交换的关系数据。大多数用于建模可交换关系数据的贝叶斯方法可以通过利用不同形式的图形来归因于此框架。但是,现有贝叶斯方法采用的图形要么是分段构函数,要么是对关系数据的准确建模,或者是复杂的连续函数,这会导致重大的计算成本。在这项工作中,我们将平滑过程引入了分段构恒定图形,以形成{\ em平滑图形},该过程允许描述关系的连续强度值,但没有不切实际地增加计算成本。特别是,我们专注于贝叶斯随机块模型(SBM),并演示了如何使分段构恒定SBM Graphon适应平滑版本。我们最初提出了集成的平滑图图(ISG),该图形(ISG)将一个平滑参数引入SBM Graphon以生成连续的关系强度值。然后,我们开发潜在特征平滑图(LFSG),该图形通过引入辅助隐藏标签来分解ISG强度的计算并启用有效推断,从而改善了ISG。现实世界数据集的实验结果验证了将平滑策略应用于随机块模型的优势,这表明平滑图形可以极大地提高AUC和精确度以链接预测而不增加计算复杂性。
Modelling exchangeable relational data can be described by \textit{graphon theory}. Most Bayesian methods for modelling exchangeable relational data can be attributed to this framework by exploiting different forms of graphons. However, the graphons adopted by existing Bayesian methods are either piecewise-constant functions, which are insufficiently flexible for accurate modelling of the relational data, or are complicated continuous functions, which incur heavy computational costs for inference. In this work, we introduce a smoothing procedure to piecewise-constant graphons to form {\em smoothing graphons}, which permit continuous intensity values for describing relations, but without impractically increasing computational costs. In particular, we focus on the Bayesian Stochastic Block Model (SBM) and demonstrate how to adapt the piecewise-constant SBM graphon to the smoothed version. We initially propose the Integrated Smoothing Graphon (ISG) which introduces one smoothing parameter to the SBM graphon to generate continuous relational intensity values. We then develop the Latent Feature Smoothing Graphon (LFSG), which improves on the ISG by introducing auxiliary hidden labels to decompose the calculation of the ISG intensity and enable efficient inference. Experimental results on real-world data sets validate the advantages of applying smoothing strategies to the Stochastic Block Model, demonstrating that smoothing graphons can greatly improve AUC and precision for link prediction without increasing computational complexity.