论文标题
将相对的rényi熵和wigner-yanase-dyson偏斜信息与广义多个量子相干
Relating relative Rényi entropies and Wigner-Yanase-Dyson skew information to generalized multiple quantum coherences
论文作者
论文摘要
量子相干性是用于量子信息处理的关键资源。通过采用大量在NMR系统中应用的相干订单的语言,目前已经根据多个量子相干(MQC)解决了量子相干。在这里,我们研究了$α$ -MQCS,这是一种新型的多个量子相干,基于$α$ relative Purity,这是一种类似于量子保真度的信息理论量词,与订单$α$的Rényi相对熵密切相关。我们的框架使将$α$ -MQC链接到Wigner-yanase-dyson偏斜信息(WYDSI),这是一种不对称的单调查找量子热力学和量子计量学中的应用。此外,我们在$α$ -MQC上得出了一个界限,特别是表明$α$ -MQC定义了量子Fisher信息的下限(QFI)。我们说明了这些想法,这些想法是由单量子状态,两个Qubit的铃铛态状态和各种多颗粒混合状态描述的量子系统。最后,我们通过模拟全身全体全体iSing Hamiltonian的时间逆转动力学来研究$α$ -MQC光谱的时间演变和相对纯度的总体信号,并对NMR系统,捕获离子和超级原子等物理平台的应用发表评论。
Quantum coherence is a crucial resource for quantum information processing. By employing the language of coherence orders largely applied in NMR systems, quantum coherence has been currently addressed in terms of multiple quantum coherences (MQCs). Here we investigate the $α$-MQCs, a novel class of multiple quantum coherences which is based on $α$-relative purity, an information-theoretic quantifier analogous to quantum fidelity and closely related to Rényi relative entropy of order $α$. Our framework enables linking $α$-MQCs to Wigner-Yanase-Dyson skew information (WYDSI), an asymmetry monotone finding applications in quantum thermodynamics and quantum metrology. Furthermore, we derive a family of bounds on $α$-MQCs, particularly showing that $α$-MQC define a lower bound to quantum Fisher information (QFI). We illustrate these ideas for quantum systems described by single-qubit states, two-qubit Bell-diagonal states, and a wide class of multiparticle mixed states. Finally, we investigate the time evolution of the $α$-MQC spectrum and the overall signal of relative purity, by simulating the time reversal dynamics of a many-body all-to-all Ising Hamiltonian and comment on applications to physical platforms such as NMR systems, trapped ions, and ultracold atoms.