论文标题
用于准备LSST警报的时间域新颖性的分类算法:在银河凸起中使用DECAM检测到的可变星和瞬态的分类算法
A classification algorithm for time-domain novelties in preparation for LSST alerts: Application to variable stars and transients detected with DECam in the Galactic Bulge
论文作者
论文摘要
随着大型天气调查望远镜(LSST)的出现,时间域天文学将面临前所未有的数据量和数据速率。通过这种大规模调查检测到的变量和瞬态的实时处理对于确定更异常的事件和有效地分配稀缺后续资源至关重要。我们开发了一种算法,以在给定的可变来源人群中识别这些新事件。我们确定给定的Passband F,PF(DM | DT)的幅度变化(DM)的分布(DM),并使用这些分布来计算测试源与总体或异常值一致的可能性。我们通过将其应用于Saha等人确定的2000多个可变星的DECAM多波段时间序列数据来证明我们的算法。 (2019年)在银河凸起中,主要由长周期变量和脉动恒星主导。我们的算法在样品中发现了18个离群值,包括微透明事件,矮nova和两个具有色相圈活性的RS CVN星,以及颜色粘量图的蓝色水平分支区域的源,没有任何已知的配料。我们将算法的性能与模拟的Properialc数据集上的多元KDE和隔离林进行了比较。我们发现,尽管它简单,但我们的算法仍会产生可比的结果。我们的方法提供了一种在实时警报传播系统中标记最不寻常事件的有效方法。
With the advent of the Large Synoptic Survey Telescope (LSST), time-domain astronomy will be faced with an unprecedented volume and rate of data. Real-time processing of variables and transients detected by such large-scale surveys is critical to identifying the more unusual events and allocating scarce follow-up resources efficiently. We develop an algorithm to identify these novel events within a given population of variable sources. We determine the distributions of magnitude changes (dm) over time intervals (dt) for a given passband f, pf(dm|dt), and use these distributions to compute the likelihood of a test source being consistent with the population, or an outlier. We demonstrate our algorithm by applying it to the DECam multi-band time-series data of more than 2000 variable stars identified by Saha et al. (2019) in the Galactic Bulge that are largely dominated by long-period variables and pulsating stars. Our algorithm discovers 18 outlier sources in the sample, including a microlensing event, a dwarf nova, and two chromospherically active RS CVn stars, as well as sources in the Blue Horizontal Branch region of the color-magnitude diagram without any known counterparts. We compare the performance of our algorithm for novelty detection with multivariate KDE and Isolation Forest on the simulated PLAsTiCC dataset. We find that our algorithm yields comparable results despite its simplicity. Our method provides an efficient way for flagging the most unusual events in a real-time alert-broker system.