论文标题

Autoemb:流媒体建议中的自动嵌入维度搜索

AutoEmb: Automated Embedding Dimensionality Search in Streaming Recommendations

论文作者

Zhao, Xiangyu, Wang, Chong, Chen, Ming, Zheng, Xudong, Liu, Xiaobing, Tang, Jiliang

论文摘要

基于深度学习的推荐系统(DLRSS)通常具有嵌入层,这些层可用于降低分类变量(例如用户/项目标识符)的维度,并有意义地在低维空间中转换它们。大多数现有DLRSS在经验上为所有用户/项目嵌入式固定且统一的维度预先定义。从最近的研究中可以明显看出,不同的用户/物品根据其受欢迎程度非常需要不同的嵌入尺寸。但是,由于大量的用户/项目及其受欢迎程度的动态性质,手动选择推荐系统中的嵌入尺寸可能非常具有挑战性。因此,在本文中,我们提出了一个基于汽车的端到端框架(AUTOEEMB),该框架可以以自动化和动态的方式根据受欢迎程度来实现各种嵌入维度。要具体而言,我们首先增强了典型的DLR,以允许各种嵌入尺寸;然后,我们提出了一个端到端可区分的框架,可以根据用户/项目的流行自动选择不同的嵌入尺寸;最后,我们在流推荐设置中提出了一种基于汽车的优化算法。基于广泛使用的基准数据集的实验结果证明了自动B框架的有效性。

Deep learning based recommender systems (DLRSs) often have embedding layers, which are utilized to lessen the dimensionality of categorical variables (e.g. user/item identifiers) and meaningfully transform them in the low-dimensional space. The majority of existing DLRSs empirically pre-define a fixed and unified dimension for all user/item embeddings. It is evident from recent researches that different embedding sizes are highly desired for different users/items according to their popularity. However, manually selecting embedding sizes in recommender systems can be very challenging due to the large number of users/items and the dynamic nature of their popularity. Thus, in this paper, we propose an AutoML based end-to-end framework (AutoEmb), which can enable various embedding dimensions according to the popularity in an automated and dynamic manner. To be specific, we first enhance a typical DLRS to allow various embedding dimensions; then we propose an end-to-end differentiable framework that can automatically select different embedding dimensions according to user/item popularity; finally we propose an AutoML based optimization algorithm in a streaming recommendation setting. The experimental results based on widely used benchmark datasets demonstrate the effectiveness of the AutoEmb framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源