论文标题

双孔多型和热带线性空间

Biconvex Polytopes and Tropical Linear Spaces

论文作者

Shin, Jaeho

论文摘要

Biconvex polytope是有限多点的经典和热带凸壳。给定比科结构多色,对于它的每个顶点,我们构建了一个有向的bigraph和gammoid,以便这些γ-胶体的基础多型的集合是催眠术的成矩形细分,从而证明了一个biconvex biConvex多型,以热带线性空间的一个细胞出现。我们的构造提供了手动可行的指南,以将hypersimplex细化为基础多面体,而无需诉诸计算机。我们将排名4的案例作为演示。我们还表明,从任何(K-1)二维双杆的顶点注入了k不确定的(k-1)单元。

A biconvex polytope is a classical and tropical convex hull of finitely many points. Given a biconvex polytope, for each vertex of it we construct a directed bigraph and a gammoid so that the collection of base polytopes of those gammoids is a matroid subdivision of the hypersimplex, thereby proving a biconvex polytope arises as a cell of a tropical linear space. Our construction provides manually feasible guidelines for subdividing the hypersimplex into base polytopes, without resorting to computers. We work out the rank-4 case as a demonstration. We also show there is an injection from the vertices of any (k-1)-dimensional biconvex polytope into the degree-(k-1) monomials in k indeterminates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源