论文标题

MGA:网络上的动量梯度攻击

MGA: Momentum Gradient Attack on Network

论文作者

Chen, Jinyin, Chen, Yixian, Zheng, Haibin, Shen, Shijing, Yu, Shanqing, Zhang, Dan, Xuan, Qi

论文摘要

基于梯度信息的对抗攻击方法可以充分找到扰动,即重新连接链接的组合,从而降低基于深度学习模型的图形嵌入算法的有效性,但也很容易落入局部最佳最佳。因此,本文提出了针对GCN模型的动量梯度攻击(MGA),该模型可以通过更少的重新布线链接实现更具侵略性的攻击。与使用梯度信息直接更新原始网络相比,将动量术语集成到迭代过程中可以稳定更新方向,从而使模型从较差的本地最佳最优值跳出并增强了具有更强的可传递性的方法。基于三种知名网络嵌入算法的节点分类和社区检测方法的实验表明,MGA具有更好的攻击效果和可传递性。

The adversarial attack methods based on gradient information can adequately find the perturbations, that is, the combinations of rewired links, thereby reducing the effectiveness of the deep learning model based graph embedding algorithms, but it is also easy to fall into a local optimum. Therefore, this paper proposes a Momentum Gradient Attack (MGA) against the GCN model, which can achieve more aggressive attacks with fewer rewiring links. Compared with directly updating the original network using gradient information, integrating the momentum term into the iterative process can stabilize the updating direction, which makes the model jump out of poor local optimum and enhance the method with stronger transferability. Experiments on node classification and community detection methods based on three well-known network embedding algorithms show that MGA has a better attack effect and transferability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源