论文标题
HFEL:联合边缘协会和资源分配,用于成本效益的等级联合边缘学习
HFEL: Joint Edge Association and Resource Allocation for Cost-Efficient Hierarchical Federated Edge Learning
论文作者
论文摘要
与在远程云上使用原始用户数据上传的传统机器学习相比,联合学习(FL)是一种吸引人的方法,用于处理移动设备的数据隐私问题。通过利用边缘服务器作为中介机构在接近度中执行部分模型聚合并缓解核心网络传输开销,它具有低延迟性和能源有效的FL的巨大潜力。因此,我们引入了一种新型的分层联合边缘学习(HFEL)框架,其中模型聚合部分迁移到云中的边缘服务器。我们进一步为HFEL框架下的设备用户制定了联合计算和通信资源分配和边缘关联问题,以实现全球成本最小化。为了解决问题,我们在HFEL框架中提出了有效的资源调度算法。它可以分解为两个子问题:\ emph {resource分配}给定每个边缘服务器的设备用户的安排设备的计划集和\ emph {edge Cosiety}。借助凸资源分配子问题的最佳策略,对于单个边缘服务器下的一组设备,可以通过迭代全局降低成本调整过程实现有效的边缘关联策略,该过程显示出将收敛到稳定的系统点。广泛的绩效评估表明,与传统的联邦学习相比,我们的HFEL框架的表现优于全球成本节省的提议基准,并在全球成本节省和获得更好的培训表现。
Federated Learning (FL) has been proposed as an appealing approach to handle data privacy issue of mobile devices compared to conventional machine learning at the remote cloud with raw user data uploading. By leveraging edge servers as intermediaries to perform partial model aggregation in proximity and relieve core network transmission overhead, it enables great potentials in low-latency and energy-efficient FL. Hence we introduce a novel Hierarchical Federated Edge Learning (HFEL) framework in which model aggregation is partially migrated to edge servers from the cloud. We further formulate a joint computation and communication resource allocation and edge association problem for device users under HFEL framework to achieve global cost minimization. To solve the problem, we propose an efficient resource scheduling algorithm in the HFEL framework. It can be decomposed into two subproblems: \emph{resource allocation} given a scheduled set of devices for each edge server and \emph{edge association} of device users across all the edge servers. With the optimal policy of the convex resource allocation subproblem for a set of devices under a single edge server, an efficient edge association strategy can be achieved through iterative global cost reduction adjustment process, which is shown to converge to a stable system point. Extensive performance evaluations demonstrate that our HFEL framework outperforms the proposed benchmarks in global cost saving and achieves better training performance compared to conventional federated learning.