论文标题
大型4D Abelian 2形式理论:来自(反)手性超级场方法的nilpotent对称性
Massive 4D Abelian 2-Form Theory: Nilpotent Symmetries from the (Anti-)Chiral Superfield Approach
论文作者
论文摘要
我们通过将(抗)手性超级场方法(ACSA)借给四个(3+1)-Dimensional(4D)ST $ \ ddot {u \ ddot {U} $ ckelgergmodified 2-f:我们也执行类似类型的练习,以推导脱壳(抗)共同对称转换。在上述派生中,对超级场地的对称不变限制起着非常重要和决定性的作用。为了证明上述nilpotent对称性的神圣性,我们将其4D普通理论(定义在4D平坦的Minkowskian时空歧管上定义)到其对应物(4,1) - 二维(抗)手性(反)超级超级子手法(由(4,2) - 二维超元素的cosemetiford $ sagion $ coction uspection uspection uspection uspection uspears uspers uspers uspers uspers uspers uspes^sippace。 (x^μ,θ,\barθ)$,其中$ x^μ(μ= 0,1,2,3)$是骨坐标和一对Grassmannian变量$(θ,\barθ)$是fermionic:fermionic:($θ^{2} = {2} = \ bar {θ^thbar {θ^^^^{2} {2}}}}} = 0, +\barθ\,θ= 0 $)本质上。我们目前的努力的新颖观察结果之一是curci-ferrari(CF)类型的限制是根据我们在ACSA框架内对我们理论的耦合(但同等)Lagrangian密度的对称不变性的要求限制的。我们还利用了ACSA的标准技术来捕获保守(反)BRST以及(反)共同指控的脱壳效果和绝对反交通。以一种微妙的方式,上述保守指控的绝对反公共性证据也意味着对我们理论的CF型限制存在适当的限制。
We derive the off-shell nilpotent (anti-)BRST symmetry transformations by exploiting the (anti-)chiral superfield approach (ACSA) to Becchi-Rouet-Stora-Tyutin (BRST) formalism for the four (3+1)-dimensional (4D) St$\ddot{u}$ckelberg-modified massive Abelian 2-form gauge theory. We perform exactly similar kind of exercise for the derivation of the off-shell nilpotent (anti-)co-BRST symmetry transformations, too. In the above derivations, the symmetry invariant restrictions on the superfields play very important and decisive roles. To prove the sanctity of the above nilpotent symmetries, we generalize our 4D ordinary theory (defined on the 4D flat Minkowskian spacetime manifold) to its counterparts (4,1)-dimensional (anti-)chiral super sub-manifolds of the (4,2)-dimensional supermanifold which is parameterized by the superspace coordinates $Z^{M} = (x^μ,θ, \barθ ) $ where $x^μ( μ= 0,1,2,3 )$ are the bosonic coordinates and a pair of Grassmannian variables $(θ, \barθ)$ are fermionic: ($θ^{2} = \bar{θ^{2}} = 0, \,\,θ\,\barθ +\barθ\,θ= 0$) in nature. One of the novel observations of our present endeavor is the derivation of the Curci-Ferrari (CF) type restrictions from the requirement of the symmetry invariance of the coupled (but equivalent) Lagrangian densities for our theory within the framework of ACSA to BRST formalism. We also exploit the standard techniques of ACSA to capture the off-shell nilpotency and absolute anticommutativity of the conserved (anti-)BRST as well as the (anti-)co-BRST charges. In a subtle manner, the proof of the absolute anticommutativity of the above conserved charges also implies the existence of the appropriate CF-type restrictions on our theory.