论文标题

Cookgan:成分成分的膳食图像合成

CookGAN: Meal Image Synthesis from Ingredients

论文作者

Han, Fangda, Guerrero, Ricardo, Pavlovic, Vladimir

论文摘要

在这项工作中,我们提出了一个基于生成深层模型的新计算框架,以合成其成分的文本清单中的照片真实食品图像。从文本中合成图像的先前作品通常依赖于预先训练的文本模型来提取文本特征,其次是生成神经网络(GAN),旨在生成以文本功能为条件的逼真的图像。这些作品主要集中于生成空间紧凑且定义明确的物体类别(例如鸟类或花朵),但是餐图像明显更为复杂,由多种成分组成,这些成分的外观和空间品质会通过烹饪方法进一步修饰。为了从成分产生类似现实的餐图像,我们提出了库克生成的对抗网络(Cookgan),Cookgan首先构建了基于注意力的成分图像 - 图像结合模型,然后将其用于调节,该模型的生成神经网络负责合成餐食图像。此外,添加了循环矛盾的约束,以进一步提高图像质量和控制外观。实验表明我们的模型能够生成与成分相对应的餐图像。

In this work we propose a new computational framework, based on generative deep models, for synthesis of photo-realistic food meal images from textual list of its ingredients. Previous works on synthesis of images from text typically rely on pre-trained text models to extract text features, followed by generative neural networks (GAN) aimed to generate realistic images conditioned on the text features. These works mainly focus on generating spatially compact and well-defined categories of objects, such as birds or flowers, but meal images are significantly more complex, consisting of multiple ingredients whose appearance and spatial qualities are further modified by cooking methods. To generate real-like meal images from ingredients, we propose Cook Generative Adversarial Networks (CookGAN), CookGAN first builds an attention-based ingredients-image association model, which is then used to condition a generative neural network tasked with synthesizing meal images. Furthermore, a cycle-consistent constraint is added to further improve image quality and control appearance. Experiments show our model is able to generate meal images corresponding to the ingredients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源