论文标题

放松的安排可扩展信念传播

Relaxed Scheduling for Scalable Belief Propagation

论文作者

Aksenov, Vitaly, Alistarh, Dan, Korhonen, Janne H.

论文摘要

利用大规模硬件并行性的能力一直是机器学习最新进展的关键推动者之一。因此,已经为开发经典机器学习算法的有效并行变体所投入了大量努力。然而,尽管对并行化拥有丰富的知识,但某些经典的机器学习算法通常证明很难在保持收敛的同时有效地并行。 在本文中,我们专注于有效的平行算法,用于针对图形模型推断的关键机器学习任务,尤其是基本信念传播算法。我们通过在这种情况下展示如何利用可扩展的放松调度程序来有效地平行这种经典范式的挑战。我们提出了一项广泛的实证研究,表明我们的方法在可扩展性和墙壁锁定时间(在一系列实际应用上)都优于先前的平行信念传播实现。

The ability to leverage large-scale hardware parallelism has been one of the key enablers of the accelerated recent progress in machine learning. Consequently, there has been considerable effort invested into developing efficient parallel variants of classic machine learning algorithms. However, despite the wealth of knowledge on parallelization, some classic machine learning algorithms often prove hard to parallelize efficiently while maintaining convergence. In this paper, we focus on efficient parallel algorithms for the key machine learning task of inference on graphical models, in particular on the fundamental belief propagation algorithm. We address the challenge of efficiently parallelizing this classic paradigm by showing how to leverage scalable relaxed schedulers in this context. We present an extensive empirical study, showing that our approach outperforms previous parallel belief propagation implementations both in terms of scalability and in terms of wall-clock convergence time, on a range of practical applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源