论文标题
来自化学均匀二元进化的黑洞合并和配对超新星的宇宙速率
Cosmic Rates of Black Hole Mergers and Pair-Instability Supernovae from Chemically Homogeneous Binary Evolution
论文作者
论文摘要
在高级重力波检测器网络的前三个观察过程中,Ligo/处女座协作检测到了几个黑洞二进制(BHBH)合并。随着检测到的BHBH合并的数量的增长,将有可能限制不同渠道的形成。在这里,我们通过进行群体合成模拟,将化学均匀的进化(CHE)通道(CHE)渠道结合在一起,将现实二进制模型与宇宙化学和星形形成史的详细宇宙学计算相结合。这使我们能够限制通过该途径形成的BHBH合并的宇宙学和Aligo/Avirgo检测率。我们预测红移零$ 5.8 \,\ textrm {gpc}^{ - 3} \ textrm {yr}^{ - 1} $的BHBH合并率通过Che Channel,与Aligo/Avirgo的测量率相比, \ text {gpc}^{ - 3} \ text {yr}^{ - 1} $,并找到最终的合并系统的BH群体$ 17-43 \,\ textrm {m} _ {\ odot} \ textrm {m} _ {\ odot} $上方是PISN间隙。我们研究了黑洞形成过程中动量踢的影响,并计算宇宙学和幅度有限的PISN速率。我们还研究了恒星形成速率中高红移偏差的影响。我们发现,动量踢球倾向于增加BHBH系统的延迟时间,而我们的PISN速率估计有限,表明当前的深度调查应该能够检测到此类事件。最后,我们发现,对于早期宇宙中恒星形成率的轻度偏差,我们的宇宙合并率估计最多会变化,而极端偏差的恒星形成率轻度偏差。
During the first three observing runs of the Advanced gravitational-wave detector network, the LIGO/Virgo collaboration detected several black hole binary (BHBH) mergers. As the population of detected BHBH mergers grows, it will become possible to constrain different channels for their formation. Here we consider the chemically homogeneous evolution (CHE) channel in close binaries, by performing population synthesis simulations that combine realistic binary models with detailed cosmological calculations of the chemical and star-formation history of the Universe. This allows us to constrain population properties, as well as cosmological and aLIGO/aVirgo detection rates of BHBH mergers formed through this pathway. We predict a BHBH merger rate at redshift zero of $5.8 \, \textrm{Gpc}^{-3} \textrm{yr}^{-1}$ through the CHE channel, to be compared with aLIGO/aVirgo's measured rate of ${53.2}_{-28.2}^{+55.8} \, \text{Gpc}^{-3} \text{yr}^{-1}$, and find that eventual merger systems have BH masses in the range $17 - 43 \, \textrm{M}_{\odot}$ below the pair-instability supernova (PISN) gap, and $>124 \, \textrm{M}_{\odot}$ above the PISN gap. We investigate effects of momentum kicks during black hole formation, and calculate cosmological and magnitude limited PISN rates. We also study the effects of high-redshift deviations in the star formation rate. We find that momentum kicks tend to increase delay times of BHBH systems, and our magnitude limited PISN rate estimates indicate that current deep surveys should be able to detect such events. Lastly, we find that our cosmological merger rate estimates change by at most $\sim 8\%$ for mild deviations of the star formation rate in the early Universe, and by up to $\sim 40\%$ for extreme deviations.