论文标题
类似人类的计划,以在混乱的环境中到达
Human-like Planning for Reaching in Cluttered Environments
论文作者
论文摘要
与机器人相比,人类非常擅长在混乱的环境中触及物体。最好的现有机器人规划师是基于配置空间的随机采样 - 在大量对象中变得过高维度。因此,大多数计划者通常无法在这种环境中有效地找到对象操纵计划。我们通过确定人类中的高级操纵计划,并将这些技能转移到机器人计划者中来解决这个问题。我们使用虚拟现实来捕捉人类参与者在桌面上遇到障碍物的桌面上的目标对象。由此,我们设计了对任务空间的定性表示,以抽象决策,而与障碍的数量无关。基于此表示,对人类的示威进行了细分并用于训练决策分类器。使用这些分类器,我们的计划者在任务空间中产生了一系列路点。这些航点提供了一个高级计划,可以将其转移到任意机器人模型中,并用于初始化局部轨迹优化器。我们通过测试看不见的人VR数据,基于物理的机器人模拟和真实的机器人(数据集和代码公开可用)来评估这种方法。我们发现,类似人类的计划者的表现优于最先进的标准轨迹优化算法,并且能够为快速计划生成有效的策略,而与环境中的障碍无关。
Humans, in comparison to robots, are remarkably adept at reaching for objects in cluttered environments. The best existing robot planners are based on random sampling of configuration space -- which becomes excessively high-dimensional with large number of objects. Consequently, most planners often fail to efficiently find object manipulation plans in such environments. We addressed this problem by identifying high-level manipulation plans in humans, and transferring these skills to robot planners. We used virtual reality to capture human participants reaching for a target object on a tabletop cluttered with obstacles. From this, we devised a qualitative representation of the task space to abstract the decision making, irrespective of the number of obstacles. Based on this representation, human demonstrations were segmented and used to train decision classifiers. Using these classifiers, our planner produced a list of waypoints in task space. These waypoints provided a high-level plan, which could be transferred to an arbitrary robot model and used to initialise a local trajectory optimiser. We evaluated this approach through testing on unseen human VR data, a physics-based robot simulation, and a real robot (dataset and code are publicly available). We found that the human-like planner outperformed a state-of-the-art standard trajectory optimisation algorithm, and was able to generate effective strategies for rapid planning -- irrespective of the number of obstacles in the environment.