论文标题
Fock模型和Segal-Bargmann变换,用于最小值的矫形器LIKE SUPERALGEBRA $ \ MATHFRAK {OSP}(M,2 | 2n)$
A Fock Model and the Segal-Bargmann Transform for the Minimal Representation of the Orthosymplectic Lie Superalgebra $\mathfrak{osp}(m,2|2n)$
论文作者
论文摘要
半圣母谎言组的最小表示是“小”无限尺寸不可约合的单一表示。人们认为它与基里洛夫轨道哲学中的最小尼尔植物共同轨道相对应。 Segal-Bargmann变换是在管类型的Hermitian Lie基团的两个不同模型之间的相互交织的积分变换。在本文中,我们构建了一个Fock模型,用于最小值的正骨谎言superalgebra $ \ mathfrak {osp}(m,2 | 2n)$。我们还构建了一个整体变换,该转换将schrödinger模型交织在一起,以最小的形式表示超直骨lie superalgebra $ \ mathfrak {osp} {osp}(m,2 | 2n)$与这个新的fock模型。
The minimal representation of a semisimple Lie group is a 'small' infinite-dimensional irreducible unitary representation. It is thought to correspond to the minimal nilpotent coadjoint orbit in Kirillov's orbit philosophy. The Segal-Bargmann transform is an intertwining integral transformation between two different models of the minimal representation for Hermitian Lie groups of tube type. In this paper we construct a Fock model for the minimal representation of the orthosymplectic Lie superalgebra $\mathfrak{osp}(m,2|2n)$. We also construct an integral transform which intertwines the Schrödinger model for the minimal representation of the orthosymplectic Lie superalgebra $\mathfrak{osp}(m,2|2n)$ with this new Fock model.