论文标题

量子随机数生成器基于违反免费CHSH-3不等式的行为

Quantum Random Number Generator based on Violations of the Free CHSH-3 Inequality

论文作者

Anoman, Don Jean Baptiste, Arnault, François, Naldi, Simone

论文摘要

我们描述了一种基于量子违规的存在,以生成随机数的方案,即对自由clauser-horne-horne-holt-holt不平等现象,即CHSH-3。我们的方法使用半决赛编程放松来计算此类违规行为。在标准设置中,CHSH-3不等式涉及两个分离的Qutrits和兼容的测量,即相互通勤,产生已知的量子结合$ 1+\ sqrt {11/3} \ 2.9149 $。在我们的框架中,$ d $二维量子系统(QUDITS),其中$ d $不能先验修复,并且可能不兼容测量操作员。这种约束的损失对于CHSH-3不平等的最大预期产生了更高的值。基于违反CHSH-3的这种上限,我们开发了一个随机数生成器的类型准备和量化,但有一个部分。我们的协议产生了最大的熵,其安全性是通过自我测试参数基于的,这是基于对量子系统的最大侵犯CHSH-3的最大侵犯性的可用性。

We describe a protocol for generating random numbers based on the existence of quantum violations of a free Clauser-Horne-Shimony-Holt inequality, namely CHSH-3. Our method uses semidefinite programming relaxations to compute such violations. In a standard setting the CHSH-3 inequality involves two separated qutrits and compatible measurement, that is, commuting with each other, yielding the known quantum bound of $1+\sqrt{11/3} \approx 2.9149$. In our framework, $d$-dimensional quantum systems (qudits) where $d$ is not fixed a priori, and measurement operators possibly not compatible, are allowed. This loss of constraints yields a higher value for the maximum expectation of the CHSH-3 inequality. Based on such upper bound on the violation of CHSH-3, we develop a random number generator of type prepare-and-measure, but with one part. Our protocol generates a maximal entropy and its security is based, through self testing arguments, on the attainability of the maximal violation of the free CHSH-3 for quantum systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源