论文标题
用于计算机断层扫描的光子计数CDTE和SI检测器的侦探量子效率:一项仿真研究
Detective quantum efficiency of photon-counting CdTe and Si detectors for computed tomography: a simulation study
论文作者
论文摘要
目的:开发光子计数CT检测器需要了解参数(例如转换器材料,吸收长度和像素大小)等参数的影响。我们将新型的线性系统框架应用于空间和能量分辨率,以低计数速率研究现实的硅(SI)和三尿酸镉(CDTE)探测器。方法:我们以$ 0.5 \ times0.5 \;的CDTE检测器设计进行了比较。 \ Mathrm {mm}^2 $和$ 0.225 \ times0.225 \; \ Mathrm {mm}^2 $ Pixels和Si检测器设计,$ 0.5 \ times0.5 \; \ Mathrm {mm}^2 $像素为30和60 mm,有效吸收长度,有和没有钨散射阻滞剂。光子传输的蒙特卡罗模拟与适合已发布数据的高斯电荷共享模型一起使用。结果:对于在120 kVp的300毫米厚的物体中进行检测,0.5毫米和0.225毫米像素CDTE系统具有28-41 $ \%$ \%$ \%$和5-29 $ \%$ \%$ \%$ \%$ \%$ \%$ \%$高于Tungsten的60 mm Si系统,而两$ $ $ $ 4- $ 11 $ $ $ \%$ \%$ \%$ \%$ \%$ \% - 与SI相比,$ \%$ DQE降低。我们还表明,将这些探测器与双光谱获取相结合是有益的。结论:在低计率制度中,CDTE检测器系统的表现优于检测任务的SI系统,而硅的表现优于一个或两个用于材料分解的CDTE系统。
Purpose: Developing photon-counting CT detectors requires understanding the impact of parameters such as converter material, absorption length and pixel size. We apply a novel linear-systems framework, incorporating spatial and energy resolution, to study realistic silicon (Si) and cadmium telluride (CdTe) detectors at low count rate. Approach: We compared CdTe detector designs with $0.5\times0.5\; \mathrm{mm}^2$ and $0.225\times0.225\; \mathrm{mm}^2$ pixels and Si detector designs with $0.5\times0.5\; \mathrm{mm}^2$ pixels of 30 and 60 mm active absorption length, with and without tungsten scatter blockers. Monte-Carlo simulations of photon transport were used together with Gaussian charge sharing models fitted to published data. Results: For detection in a 300 mm thick object at 120 kVp, the 0.5 mm and 0.225 mm pixel CdTe systems have 28-41 $\%$ and 5-29 $\%$ higher DQE, respectively, than the 60 mm Si system with tungsten, whereas the corresponding numbers for two-material decomposition are 2 $\%$ lower to 11 $\%$ higher DQE and 31-54 $\%$ lower DQE compared to Si. We also show that combining these detectors with dual-spectrum acquisition is beneficial. Conclusions: In the low-count-rate regime, CdTe detector systems outperform the Si systems for detection tasks, while silicon outperforms one or both of the CdTe systems for material decomposition.