论文标题

使用广义擦除通道对量子能力的阳性和非附性性

Positivity and nonadditivity of quantum capacities using generalized erasure channels

论文作者

Siddhu, Vikesh, Griffiths, Robert B.

论文摘要

我们考虑了各种形式的过程,我们称之为{\ em Gluing},用于结合两个或多个互补的量子通道对$(\ Mathcal {b},\ Mathcal {C})$形成一个复合材料。一种类型的胶合将完美的通道与第二个通道结合在一起,以产生\ emph {广义擦除通道}对$(\ Mathcal {b} _g,\ Mathcal {C} _G)$。我们考虑了第二个通道为(i)振幅阻尼或(ii)相阻尼量子通道的两个情况; (ii)是Leditzky等人的\ emph {dephraSure通道}。对于(i)和(ii),$(\ Mathcal {b} _g,\ Mathcal {c} _g)$取决于阻尼参数$ 0 \ leq p \ leq p \ leq 1 $和参数$ 0 \leqλ\ leq \ leq 1 $,表征了gluing过程。在这两种情况下,我们都会研究$ q^{(1)}(\ Mathcal {b} _g)$和$ q^{(1)}(\ Mathcal {C} _g)$,其中$ q^{(1)} $是通道相干的信息,并确定$(p,λ)$ sere的区域。我们缺乏任何直观解释的一个令人惊讶的结果是,$ q^{(1)}(\ Mathcal {c} _g)$对于$λ\ leq 1/2 $当$ p = 0 $时,$λ\ leq 1/2 $,但对于所有$λ> 0 $ p $均为$λ> 0 $均为$λ> $ v $ ys y smyth Mugity byty Bather(虽然也许非常小)。此外,我们研究$ q^{(1)}(\ Mathcal {b} _g)$的非附加性,对于两个并行的两个相同的通道。它发生在$(p,λ)$平面(i)的$(p,λ)的一个区域中。在情况(ii)的情况下,我们已经扩展了dephrasure通道的先前结果,但没有确定$(p,λ)$值的全部范围,而发生了非附加率的情况。同样,缺乏直观的解释。

We consider various forms of a process, which we call {\em gluing}, for combining two or more complementary quantum channel pairs $(\mathcal{B},\mathcal{C})$ to form a composite. One type of gluing combines a perfect channel with a second channel to produce a \emph{generalized erasure channel} pair $(\mathcal{B}_g,\mathcal{C}_g)$. We consider two cases in which the second channel is (i) an amplitude-damping, or (ii) a phase-damping qubit channel; (ii) is the \emph{dephrasure channel} of Leditzky et al. For both (i) and (ii), $(\mathcal{B}_g,\mathcal{C}_g)$ depends on the damping parameter $0\leq p\leq 1$ and a parameter $0 \leq λ\leq 1$ that characterizes the gluing process. In both cases we study $Q^{(1)}(\mathcal{B}_g)$ and $Q^{(1)}(\mathcal{C}_g)$, where $Q^{(1)}$ is the channel coherent information, and determine the regions in the $(p,λ)$ plane where each is zero or positive, confirming previous results for (ii). A somewhat surprising result for which we lack any intuitive explanation is that $Q^{(1)}(\mathcal{C}_g)$ is zero for $λ\leq 1/2$ when $p=0$, but is strictly positive (though perhaps extremely small) for all values of $λ> 0$ when $p$ is positive by even the smallest amount. In addition we study the nonadditivity of $Q^{(1)}(\mathcal{B}_g)$ for two identical channels in parallel. It occurs in a well-defined region of the $(p,λ)$ plane in case (i). In case (ii) we have extended previous results for the dephrasure channel without, however, identifying the full range of $(p,λ)$ values where nonadditivity occurs. Again, an intuitive explanation is lacking.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源