论文标题
无限导数重力标量场模型的哈密顿量
Hamiltonian for scalar field model of infinite derivative gravity
论文作者
论文摘要
非本地拉格朗日人描述了具有无限衍生物的理论,标准的哈密顿形式主义无法应用。特殊类型的非本地理论的哈密顿人可以通过(1+1)二维的哈密顿形式主义来构建。在本文中,我们考虑了一个受无限导数重力启发的简单标量场模型,并通过使用这种形式主义研究了其减少相位空间。假设溶液在耦合常数中的扩展,我们计算扰动的哈密顿量和符号2形式。我们还讨论了一个理论的示例,导致无限二的降低相空间,以便不同的形式选择。
Theories with an infinite number of derivatives are described by non-local Lagrangians for which the standard Hamiltonian formalism cannot be applied. Hamiltonians of special types of non-local theories can be constructed by means of the (1+1)-dimensional Hamiltonian formalism. In this paper, we consider a simple scalar field model inspired by the infinite derivative gravity and study its reduced phase space by using this formalism. Assuming the expansion of the solutions in the coupling constant, we compute the perturbative Hamiltonian and the symplectic 2-form. We also discuss an example of a theory leading to an infinite-dimensional reduced phase space for a different choice of the form factor.