论文标题
用应用单调地在表面上拧紧曲线
Tightening Curves on Surfaces Monotonically with Applications
论文作者
论文摘要
我们证明了第一个多项式结合在拧紧在任何紧凑的定向表面上收集封闭曲线所需的单调同型移动的数量,在此过程中,曲线中的交叉数不允许在过程中的任何时间增加。以前最著名的上限是指数,可以通过结合De Graaf和Schrijver的算法来获得[J. [J.梳子。理论ser。 B,1997]以及可能的表面图数量上的指数上限。为了获得新的上限,我们将工具应用于双曲线几何形状以及图形绘制算法中的操作---群集和管道膨胀 - - 在表面上的曲线研究中。 作为推论,我们为表面上的曲线和图形提供了两种有效的算法。首先,我们提供一种多项式时算法,将表面上的任何给定的多燃料转换为最小位置。这种算法仅针对单个封闭曲线存在,并且众所周知,以前的技术并未将其推广到多型情况。其次,我们提供了一种多项式时间算法,以减少使用学位-1降低,串联平行减少和$Δy$ $ $转换的任意整数$ k $的任何$ k $末端图(以及更一般的表面图)。以前的算法仅在$ k \ le 4 $时才存在于平面设置中,并且所有这些算法都依赖于基于$ k $的不同值的大量逐案分析。我们的算法利用了电转换和同型移动之间的连接,因此以统一的方式解决了问题。
We prove the first polynomial bound on the number of monotonic homotopy moves required to tighten a collection of closed curves on any compact orientable surface, where the number of crossings in the curve is not allowed to increase at any time during the process. The best known upper bound before was exponential, which can be obtained by combining the algorithm of de Graaf and Schrijver [J. Comb. Theory Ser. B, 1997] together with an exponential upper bound on the number of possible surface maps. To obtain the new upper bound we apply tools from hyperbolic geometry, as well as operations in graph drawing algorithms---the cluster and pipe expansions---to the study of curves on surfaces. As corollaries, we present two efficient algorithms for curves and graphs on surfaces. First, we provide a polynomial-time algorithm to convert any given multicurve on a surface into minimal position. Such an algorithm only existed for single closed curves, and it is known that previous techniques do not generalize to the multicurve case. Second, we provide a polynomial-time algorithm to reduce any $k$-terminal plane graph (and more generally, surface graph) using degree-1 reductions, series-parallel reductions, and $ΔY$-transformations for arbitrary integer $k$. Previous algorithms only existed in the planar setting when $k \le 4$, and all of them rely on extensive case-by-case analysis based on different values of $k$. Our algorithm makes use of the connection between electrical transformations and homotopy moves, and thus solves the problem in a unified fashion.