论文标题
异构面部识别的关系深度特征学习
Relational Deep Feature Learning for Heterogeneous Face Recognition
论文作者
论文摘要
异质的面部识别(HFR)是一项任务,与两个不同的域(例如可见光(VIS),近红外(NIR)或草图域)匹配面孔。由于缺乏数据库,HFR方法通常利用包含一般面部信息的大规模视觉数据库中的预训练功能。但是,这些预训练的功能由于与视觉域的纹理差异而导致性能降解。通过这种动机,我们提出了一个称为关系图模块(RGM)的图形结构化模块,该模块除了一般面部特征外提取全局关系信息。因为在任何模态上,每个身份之间的关系信息都相似,所以特征之间的建模关系可以帮助跨域匹配。通过RGM,关系传播会减少纹理依赖性,而不会因预先训练的特征而失去其优势。此外,RGM从本地相关的卷积特征捕获了全球面部几何图,以识别长期关系。此外,我们提出了一个节点注意单元(NAU),该单元(NAU)执行节点重新校准,以集中于基于关系的传播引起的更具信息性的节点。此外,我们建议一种新型的条件修订损失函数(C-Softmax),用于对HFR中嵌入载体的有效投影学习。所提出的方法在五个HFR数据库上优于其他最先进的方法。此外,我们证明了三个骨干的性能提高,因为我们的模块可以插入任何预训练的面部识别骨架中,以克服小型HFR数据库的局限性。
Heterogeneous Face Recognition (HFR) is a task that matches faces across two different domains such as visible light (VIS), near-infrared (NIR), or the sketch domain. Due to the lack of databases, HFR methods usually exploit the pre-trained features on a large-scale visual database that contain general facial information. However, these pre-trained features cause performance degradation due to the texture discrepancy with the visual domain. With this motivation, we propose a graph-structured module called Relational Graph Module (RGM) that extracts global relational information in addition to general facial features. Because each identity's relational information between intra-facial parts is similar in any modality, the modeling relationship between features can help cross-domain matching. Through the RGM, relation propagation diminishes texture dependency without losing its advantages from the pre-trained features. Furthermore, the RGM captures global facial geometrics from locally correlated convolutional features to identify long-range relationships. In addition, we propose a Node Attention Unit (NAU) that performs node-wise recalibration to concentrate on the more informative nodes arising from relation-based propagation. Furthermore, we suggest a novel conditional-margin loss function (C-softmax) for the efficient projection learning of the embedding vector in HFR. The proposed method outperforms other state-of-the-art methods on five HFR databases. Furthermore, we demonstrate performance improvement on three backbones because our module can be plugged into any pre-trained face recognition backbone to overcome the limitations of a small HFR database.