论文标题
在有限简单组的p宽度上
On the p-width of finite simple groups
论文作者
论文摘要
在本文中,我们衡量了有限的简单组$ g $由订单$ p $的元素产生的,其中$ p $是固定的prime。该措施被称为$ g $的$ p $ width,是\ mathbb {n} $的最小$ k \ in \ k $ in g $中的任何$ g \ in g $中的任何$ g \ in g $ in g $ in of p $ p $的最多$ k $元素。我们主要采用特征理论方法,急剧地限制了某些谎言类型组的低级家族的$ p $宽度,以及简单的交流和零星组。
In this paper we measure how efficiently a finite simple group $G$ is generated by its elements of order $p$, where $p$ is a fixed prime. This measure, known as the $p$-width of $G$, is the minimal $k\in \mathbb{N}$ such that any $g\in G$ can be written as a product of at most $k$ elements of order $p$. Using primarily character theoretic methods, we sharply bound the $p$-width of some low rank families of Lie type groups, as well as the simple alternating and sporadic groups.