论文标题

使用网格单元格的空间特征分布的多尺度表示学习

Multi-Scale Representation Learning for Spatial Feature Distributions using Grid Cells

论文作者

Mai, Gengchen, Janowicz, Krzysztof, Yan, Bo, Zhu, Rui, Cai, Ling, Lao, Ni

论文摘要

无监督的文本编码模型最近在NLP中取得了实质性进展。关键思想是使用神经网络根据句子及其上下文中的单词位置将文本中的单词转换为矢量空间表示,这适用于下游任务的端到端培训。我们在空间分析中看到了非常相似的情况,该情况着重于将POI等地理对象的绝对位置和空间环境纳入模型。空间的通用表示模型对于多种任务很有价值。但是,迄今为止,没有这种通用模型不存在,而不仅仅是仅将离散化或馈入馈入网络应用于坐标,而且几乎没有努力在共同建模具有截然不同的特征的共同建模分布中,这通常是从GIS数据中出现的。同时,诺贝尔奖获得的神经科学研究表明,哺乳动物中的网格细胞提供了多尺度的周期性表示,该表达是对位置编码的指标,对于识别位置和路径融合至关重要。因此,我们提出了一个称为Space2Vec的表示学习模型,以编码位置的绝对位置和空间关系。我们针对两个不同的任务进行了两个现实世界地理数据进行实验:1)鉴于其位置和上下文,预测POI的类型,2)图像分类利用其地理位置。结果表明,由于其多尺度表示,Space2Vec优于建立良好的ML方法,例如RBF内核,多层进料前馈网和用于位置建模和图像分类任务的瓷砖嵌入方法。详细的分析表明,所有基线最多都能以一个尺度处理分布,但在其他尺度上表现出较差的表现。相反,Space2VEC的多尺度表示可以在不同尺度上处理分布。

Unsupervised text encoding models have recently fueled substantial progress in NLP. The key idea is to use neural networks to convert words in texts to vector space representations based on word positions in a sentence and their contexts, which are suitable for end-to-end training of downstream tasks. We see a strikingly similar situation in spatial analysis, which focuses on incorporating both absolute positions and spatial contexts of geographic objects such as POIs into models. A general-purpose representation model for space is valuable for a multitude of tasks. However, no such general model exists to date beyond simply applying discretization or feed-forward nets to coordinates, and little effort has been put into jointly modeling distributions with vastly different characteristics, which commonly emerges from GIS data. Meanwhile, Nobel Prize-winning Neuroscience research shows that grid cells in mammals provide a multi-scale periodic representation that functions as a metric for location encoding and is critical for recognizing places and for path-integration. Therefore, we propose a representation learning model called Space2Vec to encode the absolute positions and spatial relationships of places. We conduct experiments on two real-world geographic data for two different tasks: 1) predicting types of POIs given their positions and context, 2) image classification leveraging their geo-locations. Results show that because of its multi-scale representations, Space2Vec outperforms well-established ML approaches such as RBF kernels, multi-layer feed-forward nets, and tile embedding approaches for location modeling and image classification tasks. Detailed analysis shows that all baselines can at most well handle distribution at one scale but show poor performances in other scales. In contrast, Space2Vec's multi-scale representation can handle distributions at different scales.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源