论文标题
固态自旋传感器的空腔量子电动力读数
Cavity quantum electrodynamic readout of a solid-state spin sensor
论文作者
论文摘要
强大的高保真读数是量子设备性能的核心。克服不良的读数是基于固态自旋缺陷的设备的越来越紧迫的挑战,尤其是考虑到它们在量子传感,量子信息和基本物理测试中的迅速采用。固体中的自旋缺陷结合了可重复性和精度可用于原子和低温系统,其紧凑性和操作条件范围具有很高的优势。然而,尽管在特定系统中取得了实验进展,但固态自旋传感器仍然缺乏通用的高保真读数技术。在这里,我们通过与介电微波腔的强耦合通过强耦合氮气 - 胶菌(NV)中心的高保真性,室温读数,这是基于通常应用于低温回路量子量子电动动力学的类似技术。这种强大的集体相互作用允许直接探测自旋集合的微波跃迁,从而克服了传统荧光读数的光子光子射击噪声限制。将此技术应用于磁力测定法,我们显示出接近系统的Johnson-Nyquist噪声极限的磁灵敏度。这种读出技术对于在微波域中表现出共振的许多顺磁性自旋系统可行。我们的结果铺平了一条清晰的路径,通过增加集合尺寸,减少自旋谐振线宽或改善的腔质量因子来实现固态旋转传感器的统一读数保真度。
Robust, high-fidelity readout is central to quantum device performance. Overcoming poor readout is an increasingly urgent challenge for devices based on solid-state spin defects, particularly given their rapid adoption in quantum sensing, quantum information, and tests of fundamental physics. Spin defects in solids combine the repeatability and precision available to atomic and cryogenic systems with substantial advantages in compactness and range of operating conditions. However, in spite of experimental progress in specific systems, solid-state spin sensors still lack a universal, high-fidelity readout technique. Here we demonstrate high-fidelity, room-temperature readout of an ensemble of nitrogen-vacancy (NV) centers via strong coupling to a dielectric microwave cavity, building on similar techniques commonly applied in cryogenic circuit cavity quantum electrodynamics. This strong collective interaction allows the spin ensemble's microwave transition to be probed directly, thereby overcoming the optical photon shot noise limitations of conventional fluorescence readout. Applying this technique to magnetometry, we show magnetic sensitivity approaching the Johnson-Nyquist noise limit of the system. This readout technique is viable for the many paramagnetic spin systems that exhibit resonances in the microwave domain. Our results pave a clear path to achieve unity readout fidelity of solid-state spin sensors through increased ensemble size, reduced spin-resonance linewidth, or improved cavity quality factor.