论文标题
用嘈杂的注释朝着抗噪声的对象检测
Towards Noise-resistant Object Detection with Noisy Annotations
论文作者
论文摘要
训练深对象探测器需要大量具有准确的对象标签和边界盒坐标的人类注销的图像,这些图像非常昂贵。嘈杂的注释更容易访问,但是它们可能对学习有害。我们解决了带有嘈杂注释的训练对象探测器的具有挑战性的问题,其中噪声包含标签噪声和边界盒噪声的混合物。我们提出了一个学习框架,该框架通过执行交替的噪声校正和模型训练,共同优化对象标签,边界框坐标和模型参数。为了解开标签噪声和边界盒噪声,我们提出了一种两步噪声校正方法。第一步通过最大程度地减少分类器差异和最大化区域对象来执行类别无关的边界框校正。第二步将知识从双重检测头延伸,以进行软标签校正和特定于类的边界框的细化。我们对Pascal VOC和MS-Coco数据集进行了实验,并具有合成噪声和机器生成的噪声。我们的方法通过有效清洁标签噪声和边界盒噪声来实现最新性能。复制所有结果的代码将发布。
Training deep object detectors requires significant amount of human-annotated images with accurate object labels and bounding box coordinates, which are extremely expensive to acquire. Noisy annotations are much more easily accessible, but they could be detrimental for learning. We address the challenging problem of training object detectors with noisy annotations, where the noise contains a mixture of label noise and bounding box noise. We propose a learning framework which jointly optimizes object labels, bounding box coordinates, and model parameters by performing alternating noise correction and model training. To disentangle label noise and bounding box noise, we propose a two-step noise correction method. The first step performs class-agnostic bounding box correction by minimizing classifier discrepancy and maximizing region objectness. The second step distils knowledge from dual detection heads for soft label correction and class-specific bounding box refinement. We conduct experiments on PASCAL VOC and MS-COCO dataset with both synthetic noise and machine-generated noise. Our method achieves state-of-the-art performance by effectively cleaning both label noise and bounding box noise. Code to reproduce all results will be released.