论文标题

加速无线资源分配的广义弯曲器分解

Accelerating Generalized Benders Decomposition for Wireless Resource Allocation

论文作者

Lee, Mengyuan, Ma, Ning, Yu, Guanding, Dai, Huaiyu

论文摘要

广义弯曲器分解(GBD)是一种用于混合整数非线性编程(MINLP)问题的全球最佳算法,它们是NP-HARD,可以在无线资源分配领域中广泛发现。 GBD的主要思想是将MINLP问题分解为一个原始问题和主要问题,直到其解决方案融合为止。但是,GBD的直接实现是时间和内存的耗费。主要的瓶颈是主问题的高复杂性,这会增加迭代。因此,我们建议利用机器学习(ML)技术来加速GBD,以降低主要问题的复杂性。具体而言,我们利用两种不同的ML技术分类和回归来处理此加速任务。这样,分别学习了切割分类器和切割回归器,以区分有用和无用的削减。仅将有用的切割添加到主问题中,因此降低了主问题的复杂性。通过在设备到设备通信网络中使用资源分配问题为例,我们验证了提出的方法可以降低GBD的计算复杂性而不会丧失最佳性,并且具有强大的概括能力。该提出的方法适用于解决无线网络中的各种MINLP问题,因为设计对于不同的问题是不变的。

Generalized Benders decomposition (GBD) is a globally optimal algorithm for mixed integer nonlinear programming (MINLP) problems, which are NP-hard and can be widely found in the area of wireless resource allocation. The main idea of GBD is decomposing an MINLP problem into a primal problem and a master problem, which are iteratively solved until their solutions converge. However, a direct implementation of GBD is time- and memory-consuming. The main bottleneck is the high complexity of the master problem, which increases over the iterations. Therefore, we propose to leverage machine learning (ML) techniques to accelerate GBD aiming at decreasing the complexity of the master problem. Specifically, we utilize two different ML techniques, classification and regression, to deal with this acceleration task. In this way, a cut classifier and a cut regressor are learned, respectively, to distinguish between useful and useless cuts. Only useful cuts are added to the master problem and thus the complexity of the master problem is reduced. By using a resource allocation problem in device-to-device communication networks as an example, we validate that the proposed method can reduce the computational complexity of GBD without loss of optimality and has strong generalization ability. The proposed method is applicable for solving various MINLP problems in wireless networks since the designs are invariant for different problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源