论文标题
关于图c* - 代数的亚代词的结合
On Conjugacy of Subalgebras of Graph C*-Algebras
论文作者
论文摘要
研究了某些图C* - 代数的内代代代代代代代代代代代总代码的内部与外轭的问题。对于大量有限的图表e,我们表明,每当$α$是相应图C*-Algebra c*(e)的相应图形的固定的无准时自动形态时W^*对于C*(e)中的所有单位w \ w \。也就是说,C*(e)的两个masas \ d_e和α(\ d_e)是外部但不是内部共轭的。通过更改基础图,传递到同构c* - 代数也使得该结果也适用于某些非准无准的自动形态。对于Cuntz代数O_N,我们找到了一个标准,可以保证多项式自动形态将规范的UHF subergebra移至非inner Conjugate uhf uhf uhf subergebra。该标准是根据对角线预测的痕迹重新缩放的措辞。
The problem of inner vs outer conjugacy of subalgebras of certain graph C*-algebras is investigated. For a large class of finite graphs E, we show that whenever $α$ is a vertex-fixing quasi-free automorphism of the corresponding graph C*-algebra C*(E) such that α(\D_E)\neq\D_E, where \D_E is the canonical MASA in C*(E), then α(\D_E)\neq w\D_E w^* for all unitaries w\in C*(E). That is, the two MASAs \D_E and α(\D_E) of C*(E) are outer but not inner conjugate. Passing to an isomorphic C*-algebra by changing the underlying graph makes this result applicable to certain non quasi-free automorphisms as well. For the Cuntz algebras O_n, we find a criterion which guarantees that a polynomial automorphism moves the canonical UHF subalgebra to a non-inner conjugate UHF subalgebra. The criterion is phrased in terms of rescaling of trace on diagonal projections.