论文标题
减少二进制分类的扩张渗透感感知
Reduced Dilation-Erosion Perceptron for Binary Classification
论文作者
论文摘要
扩张和侵蚀是来自数学形态的两个基本操作,这是一种非线性晶格计算方法,广泛用于图像处理和分析。扩张渗透感感知(DEP)是通过扩张和侵蚀的凸组合获得的形态神经网络,然后将硬限函数函数应用于二进制分类任务。可以使用凸 - 串过程以及铰链损耗函数的最小化对DEP分类器进行训练。作为晶格计算模型,DEP分类器假设特征和类空间是部分排序的集合。但是,在许多实际情况下,对于特征模式没有自然的顺序。本文使用多价值数学形态学的概念,介绍了减少的扩张渗透(R-DEP)分类器。通过适当的减少订单来赋予特征空间,可以获得R-DEP分类器。可以使用两种方法来确定这种减少的排序:一种基于支持向量分类器(SVC)的集合,具有不同的内核,另一个基于使用训练集的不同样本训练的类似SVC的装袋。使用来自OpenML存储库中的几个二进制分类数据集,比线性,多项式和径向基函数(RBF)SVC以及其集合以及其RBF SVC的集合,以平均平衡精度得分的平均平衡精度得分产生的集合和装袋R-DEP分类器。
Dilation and erosion are two elementary operations from mathematical morphology, a non-linear lattice computing methodology widely used for image processing and analysis. The dilation-erosion perceptron (DEP) is a morphological neural network obtained by a convex combination of a dilation and an erosion followed by the application of a hard-limiter function for binary classification tasks. A DEP classifier can be trained using a convex-concave procedure along with the minimization of the hinge loss function. As a lattice computing model, the DEP classifier assumes the feature and class spaces are partially ordered sets. In many practical situations, however, there is no natural ordering for the feature patterns. Using concepts from multi-valued mathematical morphology, this paper introduces the reduced dilation-erosion (r-DEP) classifier. An r-DEP classifier is obtained by endowing the feature space with an appropriate reduced ordering. Such reduced ordering can be determined using two approaches: One based on an ensemble of support vector classifiers (SVCs) with different kernels and the other based on a bagging of similar SVCs trained using different samples of the training set. Using several binary classification datasets from the OpenML repository, the ensemble and bagging r-DEP classifiers yielded in mean higher balanced accuracy scores than the linear, polynomial, and radial basis function (RBF) SVCs as well as their ensemble and a bagging of RBF SVCs.