论文标题
更快的振幅估计
Faster Amplitude Estimation
论文作者
论文摘要
在本文中,我们引入了一种有效的算法,用于量子幅度估计任务,该任务在嘈杂的中间尺度量子(NISQ)设备中起作用。量子幅度估计是一个重要的问题,在量子化学,机器学习和金融等领域中具有各种应用。由于无法在NISQ设备中执行使用相位估计的量子幅度估计的众所周知的算法,因此在最近的文献中提出了替代方法。其中一些提供了几乎达到海森堡缩放的上限的证明。但是,恒定因子很大,因此结合松散。我们在本文中的贡献是提供算法,使查询复杂性的上限几乎达到了Heisenberg缩放,并且恒定因子很小。
In this paper, we introduce an efficient algorithm for the quantum amplitude estimation task which works in noisy intermediate-scale quantum(NISQ) devices. The quantum amplitude estimation is an important problem which has various applications in fields such as quantum chemistry, machine learning, and finance. Because the well-known algorithm for the quantum amplitude estimation using the phase estimation cannot be executed in NISQ devices, alternative approaches have been proposed in recent literature. Some of them provide a proof of the upper bound which almost achieves the Heisenberg scaling. However, the constant factor is large and thus the bound is loose. Our contribution in this paper is to provide the algorithm such that the upper bound of query complexity almost achieves the Heisenberg scaling and the constant factor is small.