论文标题
在传感器网络中使用一般参数数据分布的完全分布的复合测试上
On fully-distributed composite tests with general parametric data distributions in sensor networks
论文作者
论文摘要
我们考虑一个分布式检测问题,每个传感器处的测量值遵循一般参数分布。该网络没有中央处理单元或融合中心(FC)。因此,每个节点都进行了一些测量,进行一些处理,与邻居交换消息,并最终对感兴趣现象做出决定(通常对所有节点都相同)。该问题可以作为复合假设检验,其参数未知,通常不存在统一最强大的测试。这自然导致使用了广义似然比(GLR)测试。由于测量值遵循一般的参数分布(可以模拟数据的空间依赖性),因此在网络资源中可能需要实现完全分布的检测过程。因此,我们研究了一个更简单的测试(称为L-MP),该测试使用了在每个节点处进行的测量的边缘的乘积,在每个节点上仅使用局部测量很容易估算未知参数。尽管这个简单的建议仍然需要节点之间的网络范围合作,但相对于GLR测试,通信数量大大减少,使其成为严重资源受限的传感器网络中的合适选择。这种简单的测试不会利用数据的完整参数模型,因此,分析其统计属性及其潜在的性能损失变得重要。这是通过分析L-MP渐近分布来完成的。有趣的是,尽管L-MP比GLR检验更简单,更有效地实施,但我们获得了一些条件,在这些条件下,L-MP在GLR测试中具有出色的渐近性能。最后,我们提出了用于认知无线电的完全分布的光谱传感应用的数值结果。
We consider a distributed detection problem where measurements at each sensor follow a general parametric distribution. The network does not have a central processing unit or fusion center (FC). Thus, each node takes some measurements, does some processing, exchanges messages with its neighbors and finally makes a decision (typically the same for all nodes) about the phenomenon of interest. The problem can be formulated as a composite hypothesis test with unknown parameters where, in general, a uniformly most powerful test does not exist. This leads naturally to the use of the Generalized Likelihood Ratio (GLR) test. As the measurements follow a general parametric distribution (which could model spatial dependence of the data), the implementation of fully-distributed detection procedures could be demanding in network resources. For this reason, we study the use of a simpler test (referred as L-MP) which uses the product of the marginals of the measurements taken at each node, where the unknown parameters are easily estimated with only local measurements. Although this simple proposal still requires network-wide cooperation between nodes, the number of communications is significantly reduced with respect to the GLR test, making it a suitable choice in severely resource-constrained sensor networks. This simpler test does not exploit the full parametric model of data, so, it becomes important to analyze its statistical properties and its potential performance loss. This is done through the analysis of the L-MP asymptotic distribution. Interestingly, despite the fact that the L-MP is simpler and more efficient to implement than the GLR test, we obtain some conditions under which the L-MP has superior asymptotic performance to the GLR test. Finally, we present numerical results for a fully-distributed spectrum sensing application for cognitive radios.