论文标题

零拍的跨语性转移与元学习

Zero-Shot Cross-Lingual Transfer with Meta Learning

论文作者

Nooralahzadeh, Farhad, Bekoulis, Giannis, Bjerva, Johannes, Augenstein, Isabelle

论文摘要

在任务之间学习什么是一个非常重要的话题,因为已证明知识的战略共享可以改善下游任务绩效。这对于多语言应用程序尤其重要,因为世界上大多数语言的资源不足。在这里,我们同时考虑了在多种不同语言上的培训模型的设置,当时英语以外的其他语言几乎没有数据。我们表明,可以使用元学习进行这种挑战的设置,除了训练源语言模型外,另一个模型还学会选择哪种培训实例对第一个最有益。我们使用标准监督的,零射的跨语言以及少数射击的跨语性设置来实验,以实现不同的自然语言理解任务(自然语言推断,问题回答)。我们广泛的实验设置表明,总共15种语言的元学习效果一致。我们改进了零拍摄和少量NLI(在Multinli和XNLI上)和质量质量标准(在MLQA数据集上)的最先进。全面的错误分析表明,语言之间的类型特征的相关性可以部分解释何时通过元学习学习的参数共享是有益的。

Learning what to share between tasks has been a topic of great importance recently, as strategic sharing of knowledge has been shown to improve downstream task performance. This is particularly important for multilingual applications, as most languages in the world are under-resourced. Here, we consider the setting of training models on multiple different languages at the same time, when little or no data is available for languages other than English. We show that this challenging setup can be approached using meta-learning, where, in addition to training a source language model, another model learns to select which training instances are the most beneficial to the first. We experiment using standard supervised, zero-shot cross-lingual, as well as few-shot cross-lingual settings for different natural language understanding tasks (natural language inference, question answering). Our extensive experimental setup demonstrates the consistent effectiveness of meta-learning for a total of 15 languages. We improve upon the state-of-the-art for zero-shot and few-shot NLI (on MultiNLI and XNLI) and QA (on the MLQA dataset). A comprehensive error analysis indicates that the correlation of typological features between languages can partly explain when parameter sharing learned via meta-learning is beneficial.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源