论文标题

正常束空间曲线的稳定性

Stability of Normal Bundles of Space Curves

论文作者

Coskun, Izzet, Larson, Eric, Vogt, Isabel

论文摘要

在本文中,我们证明,当$ d $ $ d $和$ g \ geq 2 $的普通brill-noether空间曲线的正常捆绑包时,并且仅当$(d,g)\ in \ in \ in \ {(5,5,2),(6,4),(6,4)\} $时。当$ g \ \ leq1 $且地面场的特征为零时,正常捆绑包的经典是严格的。我们表明,对于所有理性曲线的特征$ 2 $,这都会失败。

In this paper, we prove that the normal bundle of a general Brill-Noether space curve of degree $d$ and genus $g \geq 2$ is stable if and only if $(d,g) \not\in \{ (5,2), (6,4) \}$. When $g\leq1$ and the characteristic of the ground field is zero, it is classical that the normal bundle is strictly semistable. We show that this fails in characteristic $2$ for all rational curves of even degree.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源