论文标题

Vaserstein距离的增强不确定性原理

An enhanced uncertainty principle for the Vaserstein distance

论文作者

Carroll, Tom, Massaneda, Xavier, Ortega-Cerdà, Joaquim

论文摘要

我们改善了Sagiv和Steinerberger的一些最新结果,这些结果量化了以下不确定性原则:对于平均零的函数$ f $,要么零集的功能尺寸,要么将$ f $的正质量的质量运送到负零件的质量必须很大。我们还对拉普拉斯(Laplacian)特征功能的正的运输成本进行了尖锐的上限估计。这证明了Steinerberger的猜想,并提供了特征功能的节点集的大小的下限。

We improve some recent results of Sagiv and Steinerberger that quantify the following uncertainty principle: for a function $f$ with mean zero, either the size of the zero set of the function or the cost of transporting the mass of the positive part of $f$ to its negative part must be big. We also provide a sharp upper estimate of the transport cost of the positive part of an eigenfunction of the Laplacian. This proves a conjecture of Steinerberger and provides a lower bound of the size of the nodal set of the eigenfunction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源