论文标题
使用天体物理学应用HPC系统对FPGA和GPU的性能和能量足迹评估
Performance and energy footprint assessment of FPGAs and GPUs on HPC systems using Astrophysics application
论文作者
论文摘要
天文学和天体物理学(AA)的新挑战正在敦促需要大量的计算密集型模拟。 “ EXASCALE”(及以后)计算设施必须解决来自AA新一代观察设施的理论问题和数据的规模。当前,高性能计算(HPC)部门正在经历一个深刻的创新阶段,在这种创新中,实现“ Exascale”的主要挑战是功率消耗。这项工作的目的是提供有关当代体系结构的性能和能源足迹的一些见解,以在HPC背景下进行真实的天体物理应用。我们使用了最先进的N体应用程序,我们对其进行了重新设计和优化,以充分利用异质的基础硬件。我们定量评估计算在四个不同平台上运行时对能耗的影响。其中两个代表了当前的HPC系统(基于Intel的HPC系统,并配备了NVIDIA GPU),一个是基于ARM-MPSOC的微型群集,一个是一个“倾向Exascale的原型”,配备了与FPGA紧密耦合的ARM-MPSOC。我们研究了不同设备的行为,在该设备上,高端GPU从时间到解决方面出色,而MPSOC-FPGA系统在功耗中的表现优于GPU。我们的经验表明,考虑到计算密集型应用的FPGA似乎非常有前途,因为它们的性能正在改善以满足科学应用的要求。这项工作可能是需要计算密集型计算的天体物理应用程序的未来平台开发的参考。
New challenges in Astronomy and Astrophysics (AA) are urging the need for a large number of exceptionally computationally intensive simulations. "Exascale" (and beyond) computational facilities are mandatory to address the size of theoretical problems and data coming from the new generation of observational facilities in AA. Currently, the High Performance Computing (HPC) sector is undergoing a profound phase of innovation, in which the primary challenge to the achievement of the "Exascale" is the power-consumption. The goal of this work is to give some insights about performance and energy footprint of contemporary architectures for a real astrophysical application in an HPC context. We use a state-of-the-art N-body application that we re-engineered and optimized to exploit the heterogeneous underlying hardware fully. We quantitatively evaluate the impact of computation on energy consumption when running on four different platforms. Two of them represent the current HPC systems (Intel-based and equipped with NVIDIA GPUs), one is a micro-cluster based on ARM-MPSoC, and one is a "prototype towards Exascale" equipped with ARM-MPSoCs tightly coupled with FPGAs. We investigate the behavior of the different devices where the high-end GPUs excel in terms of time-to-solution while MPSoC-FPGA systems outperform GPUs in power consumption. Our experience reveals that considering FPGAs for computationally intensive application seems very promising, as their performance is improving to meet the requirements of scientific applications. This work can be a reference for future platforms development for astrophysics applications where computationally intensive calculations are required.