论文标题
TaskNorm:重新思考元学习的批处理
TaskNorm: Rethinking Batch Normalization for Meta-Learning
论文作者
论文摘要
图像分类的现代元学习方法依赖于越来越深的网络来实现最先进的性能,从而使批准化成为元学习管道的重要组成部分。但是,元学习环境的层次结构性质提出了几个挑战,这些挑战可能使常规批发归一化无效,因此在这种情况下需要重新考虑归一化。我们评估了用于元学习场景的一系列方法,并开发了一种称为TaskNorm的新方法。在十四个数据集上的实验表明,批准归一化的选择对基于梯度和无梯度的元学习方法的分类准确性和训练时间都具有巨大影响。重要的是,发现任务Norm始终如一地提高性能。最后,我们提供了一组正常化的最佳实践,可以公平地比较元学习算法。
Modern meta-learning approaches for image classification rely on increasingly deep networks to achieve state-of-the-art performance, making batch normalization an essential component of meta-learning pipelines. However, the hierarchical nature of the meta-learning setting presents several challenges that can render conventional batch normalization ineffective, giving rise to the need to rethink normalization in this setting. We evaluate a range of approaches to batch normalization for meta-learning scenarios, and develop a novel approach that we call TaskNorm. Experiments on fourteen datasets demonstrate that the choice of batch normalization has a dramatic effect on both classification accuracy and training time for both gradient based and gradient-free meta-learning approaches. Importantly, TaskNorm is found to consistently improve performance. Finally, we provide a set of best practices for normalization that will allow fair comparison of meta-learning algorithms.