论文标题
在NB $ _3 $ _3 $ SN超导射频腔中的SN分离边界中的磁涡流耗散分析
Analysis of Magnetic Vortex Dissipation in Sn-Segregated Boundaries in Nb$_3$Sn Superconducting RF Cavities
论文作者
论文摘要
我们使用实验,理论和计算方法的组合研究了NB $ _3 $ SN超导RF(SRF)腔的NB $ _3 $ SN超导RF(SRF)腔的机制。扫描传输电子显微镜(STEM)图像和能量色散光谱(EDS)的某些NB $ _3 $ sn腔显示在NB $ _3 $ _3 $ _3 $ sn的SN偏析中,Sn浓度高达$ \ sin $ \ sin $ 35,$ \ sim $ 35 at。\%和宽度$ \ sim $ \ sim $ \ sim $ \ sim $ \ sim $ \ sim $ \ sim $ \ sim $ \ sim $ 3 nm。使用从头算计算,我们估计过量TIN对材料的局部超导特性的影响。我们将SN分离建模为局部临界温度的降低。然后,我们使用时间依赖性的金茨堡 - 兰道理论来了解隔离在磁涡核中的作用。我们的模拟表明,晶界充当涡旋穿透的成核位点,又是成核后涡旋的固定位点。根据所施加场的大小,涡旋可能仍固定在晶界中或穿透晶粒本身。我们估计由于涡流填充晶界的涡流引起的超导损失,并与观察到的性能降解与较高的磁场相比。我们估计,如果0.03 \%的晶粒边界积极核定涡度,则质量因子可能会在典型的操作场上降低数量级($ 10^{10} $至$ 10^9 $)。我们还估计需要填充涡流以匹配空腔加热的实验观察的体积。
We study mechanisms of vortex nucleation in Nb$_3$Sn Superconducting RF (SRF) cavities using a combination of experimental, theoretical, and computational methods. Scanning transmission electron microscopy (STEM) image and energy dispersive spectroscopy (EDS) of some Nb$_3$Sn cavities show Sn segregation at grain boundaries in Nb$_3$Sn with Sn concentration as high as $\sim$35 at.\% and widths $\sim$3 nm in chemical composition. Using ab initio calculations, we estimate the effect excess tin has on the local superconducting properties of the material. We model Sn segregation as a lowering of the local critical temperature. We then use time-dependent Ginzburg-Landau theory to understand the role of segregation on magnetic vortex nucleation. Our simulations indicate that the grain boundaries act as both nucleation sites for vortex penetration and pinning sites for vortices after nucleation. Depending on the magnitude of the applied field, vortices may remain pinned in the grain boundary or penetrate the grain itself. We estimate the superconducting losses due to vortices filling grain boundaries and compare with observed performance degradation with higher magnetic fields. We estimate that the quality factor may decrease by an order of magnitude ($10^{10}$ to $10^9$) at typical operating fields if 0.03\% of the grain boundaries actively nucleate vortices. We additionally estimate the volume that would need to be filled with vortices to match experimental observations of cavity heating.