论文标题
加速高阶耦合聚类方法的收敛性II:耦合群集$λ$方程和动态阻尼
Accelerating the Convergence of Higher-Order Coupled Cluster Methods II: Coupled Cluster $Λ$ Equations and Dynamic Damping
论文作者
论文摘要
以前应用于高阶耦合群集振幅方程的子材料方法扩展到耦合群集$λ$方程的情况。发现$λ$方程的子介质过程与振幅方程式高度相似,并且相对于所有$ \ hat {t} $或$ \hatλ$ amplududes ties均相对于融合速率的提高相似。还提出了一种动态阻尼的方法,发现在振幅或$λ$方程中的振荡行为的情况下,可以有效地恢复快速收敛。总之,这些技术允许在计算分析梯度和高阶耦合群集方法的分析梯度和属性所必需的幅度和$λ$方程的情况下收敛,而没有高内存或磁盘I/O成本的全部DIIS全部伸出的成本。
The method of sub-iteration, which was previously applied to the higher-order coupled cluster amplitude equations, is extended to the case of the coupled cluster $Λ$ equations. The sub-iteration procedure for the $Λ$ equations is found to be highly similar to that for the amplitude equations, and to exhibit a similar improvement in rate of convergence relative to extrapolation of all $\hat{T}$ or $\hatΛ$ amplitudes using DIIS. A method of dynamic damping is also presented which is found to effectively recover rapid convergence in the case of oscillatory behavior in the amplitude or $Λ$ equations. Together, these techniques allow for the convergence of both the amplitude and $Λ$ equations necessary for the calculation of analytic gradients and properties of higher-order coupled cluster methods without the high memory or disk I/O cost of full DIIS extrapolation.