论文标题

带有振荡和奇异数据的准线性riccati类型方程

Quasilinear Riccati type equations with oscillatory and singular data

论文作者

Nguyen, Quoc-Hung, Phuc, Nguyen Cong

论文摘要

我们表征了quasilinear riccati类型方程的解决方案的存在\ begin {eqnarray*} \ left \ {\ oken {array} {rcl} {rcl} - {\ rm div} \ \ rm div} \,\ nathcal \ nathcal {a} \ text {in} 〜Ω,\\ u&=&0 \ quad \ text {on}〜\ partialω,\ end end {array} \ right。 \ end {eqnarray*}带有分配或量度基准$σ$。这里$ {\ rm div} \,\ Mathcal {a}(x,x,\ nabla u)$是一种以$ p $ -laplacian($ p> 1 $)为模型的准省利操作员,而$ phaplacian($ p> 1 $),而$ω$是一个有界的域,其边界足够平坦(在RefifeNberg的含义上)。对于分销数据,我们假设$ p> 1 $和$ q> p $。对于测量数据,我们假设它们在$ω$,$ p> \ frac {3n-2} {2n-1} $中得到紧凑的支持,而$ q $在$ p-1 $ p-1 <q <1 $中。在这种情况下,我们还假设$ \ Mathcal {a} $和$ \partialΩ$上的更多规律性条件。

We characterize the existence of solutions to the quasilinear Riccati type equation \begin{eqnarray*} \left\{ \begin{array}{rcl} -{\rm div}\,\mathcal{A}(x, \nabla u)&=& |\nabla u|^q + σ\quad \text{in} ~Ω, \\ u&=&0 \quad \text{on}~ \partial Ω, \end{array}\right. \end{eqnarray*} with a distributional or measure datum $σ$. Here ${\rm div}\,\mathcal{A}(x, \nabla u)$ is a quasilinear elliptic operator modeled after the $p$-Laplacian ($p>1$), and $Ω$ is a bounded domain whose boundary is sufficiently flat (in the sense of Reifenberg). For distributional data, we assume that $p>1$ and $q>p$. For measure data, we assume that they are compactly supported in $Ω$, $p>\frac{3n-2}{2n-1}$, and $q$ is in the sub-linear range $p-1<q<1$. We also assume more regularity conditions on $\mathcal{A}$ and on $\partialΩ$ in this case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源