论文标题
从广义麦克斯韦分布中的最大和最小值的扩展
Expansions of maximum and minimum from Generalized Maxwell distribution
论文作者
论文摘要
广义麦克斯韦分布是经典麦克斯韦分布的扩展。在本文中,我们集中于标准化最大值和最小值的关节分布渐近差。在最佳归一化常数下,建立了归一化部分最大值和最小值的关节分布和密度的渐近膨胀。这些膨胀用于研究关节分布的收敛速度以及归一化最大值和最小值的密度趋于其相应的最终极限。提供数值分析以支持我们的结果。
Generalized Maxwell distribution is an extension of the classic Maxwell distribution. In this paper, we concentrate on the joint distributional asymptotics of normalized maxima and minima. Under optimal normalizing constants, asymptotic expansions of joint distribution and density for normalized partial maxima and minima are established. These expansions are used to educe speeds of convergence of joint distribution and density of normalized maxima and minima tending to its corresponding ultimate limits. Numerical analysis are provided to support our results.