论文标题

三角剖分和四边形的最小维纳指数

Minimum Wiener Index of Triangulations and Quadrangulations

论文作者

Czabarka, Éva, Olsen, Trevor, Smith, Stephen, Székely, László A.

论文摘要

连接图的Wiener索引是所有未排序的顶点对之间的距离之和。我们为简单三角剖分和四个连通性的最低维也纳指数提供至少$ c $的公式,并提供实现这些值的极端结构。我们的主要工具是在高度连接的三角形和四角形中设置上限。

The Wiener index of a connected graph is the sum of the distances between all unordered pairs of vertices. We provide formulae for the minimum Wiener index of simple triangulations and quadrangulations with connectivity at least $c$, and provide the extremal structures, which attain those values. Our main tool is setting upper bounds for the maximum degree in highly connected triangulations and quadrangulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源