论文标题

bidet:有效的二进制对象检测器

BiDet: An Efficient Binarized Object Detector

论文作者

Wang, Ziwei, Wu, Ziyi, Lu, Jiwen, Zhou, Jie

论文摘要

在本文中,我们提出了一种称为bidet的二进制神经网络学习方法,用于有效的对象检测。传统的网络二进制方法直接量化具有约束代表能力的一个阶段或两个阶段探测器中的权重和激活,因此网络中的信息冗余会导致许多误报并显着降低性能。相反,我们的竞标集充分利用二元神经网络的代表能力来通过冗余去除来检测对象检测,通过这种释放,检测精度通过缓解的误报增强。具体而言,我们将信息瓶颈(IB)原理推广到对象检测中,其中高级特征映射中的信息量受到约束,并且功能图和对象检测之间的相互信息最大化。同时,我们学会了稀疏的对象先验,因此后代将重点放在伪造阳性消除的信息检测预测上。 Pascal VOC和可可数据集的广泛实验表明,我们的方法的表现优于最先进的二进制神经网络。

In this paper, we propose a binarized neural network learning method called BiDet for efficient object detection. Conventional network binarization methods directly quantize the weights and activations in one-stage or two-stage detectors with constrained representational capacity, so that the information redundancy in the networks causes numerous false positives and degrades the performance significantly. On the contrary, our BiDet fully utilizes the representational capacity of the binary neural networks for object detection by redundancy removal, through which the detection precision is enhanced with alleviated false positives. Specifically, we generalize the information bottleneck (IB) principle to object detection, where the amount of information in the high-level feature maps is constrained and the mutual information between the feature maps and object detection is maximized. Meanwhile, we learn sparse object priors so that the posteriors are concentrated on informative detection prediction with false positive elimination. Extensive experiments on the PASCAL VOC and COCO datasets show that our method outperforms the state-of-the-art binary neural networks by a sizable margin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源