论文标题

在质地上的偏见,用于几次CNN细分

On the Texture Bias for Few-Shot CNN Segmentation

论文作者

Azad, Reza, Fayjie, Abdur R, Kauffman, Claude, Ayed, Ismail Ben, Pedersoli, Marco, Dolz, Jose

论文摘要

尽管最初认为卷积神经网络(CNN)是由形状驱动以执行视觉识别任务的驱动的,但最近的证据表明,在大型标记培训数据集中学习时,CNN中的纹理偏见可提供更高的性能模型。这与人类视觉皮层的感知偏见形成鲜明对比,后者对形状成分具有更强的偏爱。感知差异可以解释为什么当可用标记的数据集时,CNNS可以实现人级的性能,但是它们的性能在低标签的数据方案中大大降低,例如很少的弹性语义分段。为了消除几乎没有学习的上下文中的质地偏见,我们提出了一种新颖的体系结构,该建筑集成了一组高斯(Dog)的差异,以减轻特征空间中高频的本地组件。这会产生一组修改的特征图,其高频组件在空间域中高斯分布的不同标准偏差值下降。由于这会为单个图像提供多个特征图,因此我们采用双向卷积长期记忆来有效合并多尺度空间表示。我们对三个众所周知的少数分段基准进行了广泛的实验-Pascal I5,Coco-20i和FSS-1000-并证明我们的方法在相同条件下的两个数据集中都优于最先进的方法。该代码可在以下网址找到:https://github.com/rezazad68/fewshot-sementation

Despite the initial belief that Convolutional Neural Networks (CNNs) are driven by shapes to perform visual recognition tasks, recent evidence suggests that texture bias in CNNs provides higher performing models when learning on large labeled training datasets. This contrasts with the perceptual bias in the human visual cortex, which has a stronger preference towards shape components. Perceptual differences may explain why CNNs achieve human-level performance when large labeled datasets are available, but their performance significantly degrades in lowlabeled data scenarios, such as few-shot semantic segmentation. To remove the texture bias in the context of few-shot learning, we propose a novel architecture that integrates a set of Difference of Gaussians (DoG) to attenuate high-frequency local components in the feature space. This produces a set of modified feature maps, whose high-frequency components are diminished at different standard deviation values of the Gaussian distribution in the spatial domain. As this results in multiple feature maps for a single image, we employ a bi-directional convolutional long-short-term-memory to efficiently merge the multi scale-space representations. We perform extensive experiments on three well-known few-shot segmentation benchmarks -- Pascal i5, COCO-20i and FSS-1000 -- and demonstrate that our method outperforms state-of-the-art approaches in two datasets under the same conditions. The code is available at: https://github.com/rezazad68/fewshot-segmentation

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源