论文标题

晶格QCD和R-Ratio之间的辐射真空极化的一致性

Consistency of hadronic vacuum polarization between lattice QCD and the R-ratio

论文作者

Lehner, Christoph, Meyer, Aaron S.

论文摘要

在最近的晶格QCD计算中以及一些晶格QCD计算和R-Ratio结果之间,在雄性真空极化对MUON异常磁矩的理论结果中都有新出现的紧张局势。在本文中,我们致力于审查这些计算的关键方面。我们特别关注由RBC/UKQCD定义的欧几里得位置空间窗口的精确计算,这些窗口是晶格社区内交叉检查的理想数量,并具有R-RATIO结果。我们使用MILC协作在交错的形式主义中产生的物理,向下,奇怪和魅力的Sea Quark仪表进行晶格QCD计算。我们使用反晶格间距从$ a^{ - 1} \约1.6 $ GEV到$ 3.5 $ GEV研究了连续限制,与Fnal/HPQCD/MILC和Aubin等人的最新研究相同。类似于最近对宝马的研究。我们的计算表现出$a_μ^{\ rm ud,conn。,isospin,w} $从$ 0.4 $ fm到$ 1.0 $ fm的张力,并以同一规格配置以不同的矢量电流离散化。我们的结果可能表明与估计连续外推的不确定性有关的困难,值得进一步关注。在这项工作中,我们还提供了$a_μ^{\ rm ud,conn。,isospin} $,$a_μ^{\ rm s,conn。,isospin} $,$a_μ^{\ rm sib,conn。对于总贡献,我们发现$a_μ^{\ rm hvp〜lo} = 714(27)(13)(13)10^{ - 10} $,$a_μ^{\ rm ud,conn。 s,conn。,isospin} = 52.83(22)(65)10^{ - 10} $和$a_μ^{\ rm sib,conn。} = 9.0(0.8)(1.2)10^{ - 10} $,第一个不确定性是统计的,第二个系统是统计和第二系统。我们还对有限体积的校正进行了评论,对突破性的校正进行了评论。

There are emerging tensions for theory results of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment both within recent lattice QCD calculations and between some lattice QCD calculations and R-ratio results. In this paper we work towards scrutinizing critical aspects of these calculations. We focus in particular on a precise calculation of Euclidean position-space windows defined by RBC/UKQCD that are ideal quantities for cross-checks within the lattice community and with R-ratio results. We perform a lattice QCD calculation using physical up, down, strange, and charm sea quark gauge ensembles generated in the staggered formalism by the MILC collaboration. We study the continuum limit using inverse lattice spacings from $a^{-1}\approx 1.6$ GeV to $3.5$ GeV, identical to recent studies by FNAL/HPQCD/MILC and Aubin et al. and similar to the recent study of BMW. Our calculation exhibits a tension for the particularly interesting window result of $a_μ^{\rm ud, conn.,isospin, W}$ from $0.4$ fm to $1.0$ fm with previous results obtained with a different discretization of the vector current on the same gauge configurations. Our results may indicate a difficulty related to estimating uncertainties of the continuum extrapolation that deserves further attention. In this work we also provide results for $a_μ^{\rm ud,conn.,isospin}$, $a_μ^{\rm s,conn.,isospin}$, $a_μ^{\rm SIB,conn.}$ for the total contribution and a large set of windows. For the total contribution, we find $a_μ^{\rm HVP~LO}=714(27)(13) 10^{-10}$, $a_μ^{\rm ud,conn.,isospin}=657(26)(12) 10^{-10}$, $a_μ^{\rm s,conn.,isospin}=52.83(22)(65) 10^{-10}$, and $a_μ^{\rm SIB,conn.}=9.0(0.8)(1.2) 10^{-10}$, where the first uncertainty is statistical and the second systematic. We also comment on finite-volume corrections for the strong-isospin-breaking corrections.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源