论文标题
超越应用程序终点结果:量化MCMC加速器的统计鲁棒性
Beyond Application End-Point Results: Quantifying Statistical Robustness of MCMC Accelerators
论文作者
论文摘要
统计机器学习通常使用概率算法,例如马尔可夫链蒙特卡洛(MCMC)来解决广泛的问题。概率计算通常认为传统处理器的速度太慢,可以通过使用平行性并使用各种近似技术来优化设计来加速使用专门的硬件。当前评估概率加速器正确性的方法通常不完整,主要仅着眼于终点结果质量(“准确性”)。对于硬件设计人员和域专家来说,重要的是要超越终点“准确性”,并注意硬件优化对其他统计属性的影响。 这项工作朝着定义指标和一种定量评估概率加速器的正确性的方法迈出了第一步,超出了终点结果质量。我们提出了三个统计鲁棒性的支柱:1)取样质量,2)收敛诊断和3)拟合良好。我们将框架应用于代表性的MCMC加速器和表面设计问题,该问题仅使用应用程序终点结果质量而无法暴露。应用该框架指导设计空间探索表明,可以通过稍微增加位表示,而无需浮点硬件要求,可以通过稍微增加位表示来实现与浮点软件相当的统计鲁棒性。
Statistical machine learning often uses probabilistic algorithms, such as Markov Chain Monte Carlo (MCMC), to solve a wide range of problems. Probabilistic computations, often considered too slow on conventional processors, can be accelerated with specialized hardware by exploiting parallelism and optimizing the design using various approximation techniques. Current methodologies for evaluating correctness of probabilistic accelerators are often incomplete, mostly focusing only on end-point result quality ("accuracy"). It is important for hardware designers and domain experts to look beyond end-point "accuracy" and be aware of the hardware optimizations impact on other statistical properties. This work takes a first step towards defining metrics and a methodology for quantitatively evaluating correctness of probabilistic accelerators beyond end-point result quality. We propose three pillars of statistical robustness: 1) sampling quality, 2) convergence diagnostic, and 3) goodness of fit. We apply our framework to a representative MCMC accelerator and surface design issues that cannot be exposed using only application end-point result quality. Applying the framework to guide design space exploration shows that statistical robustness comparable to floating-point software can be achieved by slightly increasing the bit representation, without floating-point hardware requirements.