论文标题

可行的可提供能源的整合器MB4及其在量子机械波袋动力学上的应用

A Parallelizable Energy-Preserving Integrator MB4 and Its Application to Quantum-Mechanical Wavepacket Dynamics

论文作者

Sakai, Tsubasa, Kudo, Shuhei, Imachi, Hiroto, Miyatake, Yuto, Hoshi, Takeo, Yamamoto, Yusaku

论文摘要

在模拟物理系统时,总能量的保护通常是必不可少的,尤其是当经常发生不同形式的能量之间的能量转换时。最近,提出了一个新的四阶能量保存集成剂,名为MB4的整合器是基于所谓的连续阶段runge -kutta方法(Y.〜Miyatake和J.〜C.〜Butcher,Siam J.〜Numer。该方法的一个显着特征是它是可行的,这使得其一个时间步长的计算时间可与二阶方法相当。在本文中,我们说明了如何使用二维网格上的非线性schrödinger-type方程将MB4方法应用于混凝土的普通微分方程。该系统是二维无序有机材料的典型模型,由于非线性和$δ$ function,例如来自缺陷的潜力,因此很难用经典runge(kutta方法)等标准方法来解决。数值测试表明,该方法可以稳定地求解方程,并在整个模拟过程中将总能量保留到16位精度。还表明,该方法的并行化使用3个计算节点可产生高达2.8倍的速度。

In simulating physical systems, conservation of the total energy is often essential, especially when energy conversion between different forms of energy occurs frequently. Recently, a new fourth order energy-preserving integrator named MB4 was proposed based on the so-called continuous stage Runge--Kutta methods (Y.~Miyatake and J.~C.~Butcher, SIAM J.~Numer.~Anal., 54(3), 1993-2013). A salient feature of this method is that it is parallelizable, which makes its computational time for one time step comparable to that of second order methods. In this paper, we illustrate how to apply the MB4 method to a concrete ordinary differential equation using the nonlinear Schrödinger-type equation on a two-dimensional grid as an example. This system is a prototypical model of two-dimensional disordered organic material and is difficult to solve with standard methods like the classical Runge--Kutta methods due to the nonlinearity and the $δ$-function like potential coming from defects. Numerical tests show that the method can solve the equation stably and preserves the total energy to 16-digit accuracy throughout the simulation. It is also shown that parallelization of the method yields up to 2.8 times speedup using 3 computational nodes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源