论文标题

Coleman-de Luccia过渡的简单系统

A Simple System For Coleman-De Luccia Transitions

论文作者

Eckerle, Kate

论文摘要

本文提出了一个简单的框架,该框架根据其原始和隧道真空斑块的欧几里得几何形状组织薄壁Coleman-de Luccia Instantons。我们认为所有先验允许的真空对(用于贴片的de Sitter或Anti Anti-De保姆,Minkowski都可以以任何一个限制获得),以及连接它们的$ O(4)$ - 对称的薄壁几何形状。对于每个候选弹跳几何形状,都会得出对$ O(4)$不变的运动方程的解决方案,或者是派生的,或者排除了真空过渡。对于存在解决方案的参数制度,我们确定弹跳的扩展/收缩是否在欧几里得作用的第二个变化中提供负模式。所有结果都来自单个函数的单调性。

This paper presents a simple framework that organizes thin-wall Coleman-De Luccia instantons based on the Euclidean geometries of their original and tunneled vacuum patches. We consider all a priori allowed vacuum pairs (de Sitter or Anti-de Sitter for either patch, Minkowski can be obtained as a limit of either), and $O(4)$-symmetric thin-wall geometries connecting them. For each candidate bounce geometry, either a condition under which a solution to the $O(4)$-invariant equations of motion exists is derived, or the would-be vacuum transition is ruled out. For the parameter regimes in which a solution exists, we determine whether expansion/contraction of the bounce supplies a negative mode in the second variation of the Euclidean action. All results follow from the monotonicity of a single function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源